Comparative Prevalence and Provenance of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes in Tropical Rivers of Sri Lanka and India

Author(s):  
Manish Kumar ◽  
Tushara Chaminda ◽  
Sulfikar Hanafi ◽  
Arbind Patel ◽  
Payal Mazumder ◽  
...  

<p><strong>Abstract: </strong></p><p>Prevalence and provenance of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARG) and metal concentrations were compared in river Kelani of Sri Lanka and Sabarmati and Brahmaputra of India. The prevalence of E. coli was 10-27, 267-76,600 and <50 CFU ml<sup>-1</sup> in aforementioned rivers, respectively. Isolated E. coli colonies were subjected to resistance test with norfloxacin (NFX), ciprofloxacin (CIP), levofloxacin (LVX), kanamycin monosulphate (KM), tetracycline (TC), and sulfamethoxazole (ST). The isolates were predominantly multi-antibiotic resistant, with greater resistance to TC and ST. Brahmaputra River showed greater resistance to all tested antibiotics. Sabarmati River showed higher resistance to TC and ST than Kelani. Genes conferring resistance to tetracyclines, sulphonamides, b-lactams and fluoroquinolones were common. ARG, gyrA, tetW, sul1 and ampC were detected in Kelani River, additionally, aac-(6’)-1b-cr, and blaTEM were detected in Brahmaputra River. In both countries, less polluted segments exhibited more copies of ARG. Faecal contamination was decoupled from percentage antibiotic resistance and metal contamination, suggesting to separate of hospital waste from domestic waste with specific guidelines.</p><p> </p><p><strong>Keywords</strong>: Antibiotic Resistance; Brahmaputra; E. coli; Kelani River; Sabarmati, Gene</p>

2021 ◽  
Vol 26 ◽  
Author(s):  
Maria Camila Zapata Zúñiga ◽  
Miguel Angel Parra-Pérez ◽  
Johan Alexander Álvarez-Berrio ◽  
Nidia Isabel Molina-Gómez

This study aimed to evaluate the efficiency of technologies for removing antibiotics, antibiotic-resistant bacteria and their antibiotic resistance genes, and the countries where they have been developed. For this purpose, was conducted a systematic review to identify the tertiary treatments to remove the above-mentioned pollutants. The ScienceDirect and Scopus databases were used as sources of information, taking into account only experimental research from 2006 to 2019 and technologies with removal rates higher than 70% to the information analyses. From the analysis of 9 technologies evaluated, in a set of 47 investigations, photo-Fenton, and electrochemical treatments were found to be the most efficient in the removal of antibiotics; gamma radiation and photocatalysis with TiO2 and UV revealed better results in the removal of resistant microbial agents and their resistance genes, with efficiencies of 99.9%. As one of the largest producers and consumers of antibiotics, China appears to be the country with the most scientific research on the area. The importance of innovation in wastewater treatment processes to achieve better results in the remotion of antibiotics, antibiotic-resistant bacteria, and their resistance genes is highlighted, given the effects on the aquatic ecosystems and public health.


Sign in / Sign up

Export Citation Format

Share Document