Partitioning of preferential flows in fracture networks: Smoothed Particle Dynamics simulations and analytical modeling of infiltration dynamics

Author(s):  
Jannes Kordilla ◽  
Marco Dentz ◽  
Alexandre Tartakovsky

<p>Recharge estimation in fractured-porous aquifers is an essential tool for proper water management and assessment of vulnerability. As opposed to diffuse infiltration, often encountered in consolidated and unconsolidated porous media, the infiltration dynamics in the unsaturated zone of fractured-porous media and karst aquifers often exhibit a rapid, gravity-driven flow component along preferential flow paths such as fractures, fracture networks, faults and fault zones. The partitioning into two hydraulically contrasting domains commonly leads to a breakdown of classical volume-effective flow equations employed in many FD or FEM modeling approaches which only consider the capillarity of the medium. Even in the presence of a porous matrix, preferential pathways along fractures have been shown to sustain flow percolation under equilibrium and non-equilibrium conditions. In order to properly capture the flow physics, various components have to be considered such as static and dynamic contact angles, surface tension, free-surface (multi-phase) interface dynamics, dynamic switching of flow modes (between droplets, rivulets, films) and associated formation of singularities in the case of merging or snapping flow. Here we study the process of vertical infiltration and partitioning at a single fracture intersection into a horizontal and vertical flow component. Via parallelized Smoothed Particle Hydrodynamics simulations we demonstrate how flow is first channeled into the horizontal fracture and then transitions into a Washburn-type inflow when pressure conditions are met and a connection to the next vertical flow path is established. We further proceed to capture this process with an analytical approach and finally demonstrate how to obtain a process-based transfer function to upscale this process to arbitrary fracture geometries and fracture cascades.</p>

2021 ◽  
Author(s):  
Florian Rüdiger ◽  
Kim Bartsch ◽  
John R. Nimmo ◽  
Jannes Kordilla

<p>Recharge dynamics within the vadose zone (variable saturation conditions) of consolidated fractured rock formations are an ongoing challenge when it comes to process understanding and predictive modeling. The proper delineation of fast (macropores, fractures, conduits) and slow (matrix) flow components in these systems and their interaction with each other remains a complex puzzle and holds a key to enhance process-based infiltration models.</p><p>We conducted laboratory and field experiments to study infiltration dynamics through porous-fractured systems. Laboratory experiments were carried out with analogue fracture networks on meter scale. Orthogonal networks were created by placing equally sized blocks with a constant gap between to glass plates, which were mount by metal clamps. Vertical flow through different network configurations (apertures, intersection types, topology, flow rates) was studied for (1) porous media (sandstone) and (2) non-porous media (glass) to delineate the control of network features on flow dynamics, as well as the effect of fracture-matrix interaction. Matrix imbibition was found to strongly control the preferential flow velocity during flow path evolution. Higher infiltration rates lead to more by-pass at fracture intersections, whereas low infiltration rates favor flow partitioning into horizontal fractures. Vertical flow progression within the non-porous network is significantly faster due to the lack of imbibition. Semi-analytical tools, such as transfer functions, and source-responsive dual-domain models are tested to reproduce the experimental data and to incorporate key features of fracture networks in future modeling approaches. We additionally obtained experimental data from infiltration dynamics at porous-fractured field sites on meter scale to compare them to the well-controlled laboratory experiments and to evaluate the applicability of the results to actual field processes.</p>


2010 ◽  
Vol 14 (11) ◽  
pp. 1-13 ◽  
Author(s):  
Farhat Abbas ◽  
Derek A. Rose

Abstract During downward vertical flow of a viscous solution, the viscous fingering (VF) phenomenon affects miscible displacement of solutes through a soil profile. On the other hand, during horizontal flow, when the liquid residing in a horizontal bed of porous materials is displaced by another liquid of different density, the resulting hydrodynamic dispersion is modified by the formation of a tongue of denser liquid undershooting the less dense liquid, a phenomenon known as gravity segregation (GS). To explore VF and GS phenomena, the authors present laboratory experimental results on the vertical and horizontal transport of bulk solution and ions of different concentrations and/or densities through inert and reactive porous media. The study showed that, with miscible liquids, breakthrough starts later and ends earlier. The authors predicted the behavior of immiscible liquids by the nondimensional gravity segregation number β: that is, with increase in β, the segregation becomes extreme. The curve fitting technique CXTFIT 2.0 fitted the experimental breakthrough curves well, showing that the apparent coefficients of hydrodynamic dispersion vary much less with pore-water velocity in horizontal than in vertical flow, but retardation factors are not influenced by the orientation of flow. This work is relevant to the preferential flow of viscous liquids such as liquid fertilizers in agricultural fields, oil recovery processes, and the intrusion of saline water into the freshwater of coastal aquifers.


Biofouling ◽  
2013 ◽  
Vol 29 (9) ◽  
pp. 1069-1086 ◽  
Author(s):  
Simona Bottero ◽  
Tomas Storck ◽  
Timo J. Heimovaara ◽  
Mark C.M. van Loosdrecht ◽  
Michael V. Enzien ◽  
...  

2016 ◽  
Vol 64 (2) ◽  
pp. 111-120 ◽  
Author(s):  
Miroslav Fér ◽  
Martin Leue ◽  
Radka Kodešová ◽  
Horst H. Gerke ◽  
Ruth H. Ellerbrock

Abstract The organo-mineral coatings of soil aggregates, cracks, and biopores control sorption and macropore-matrix exchange during preferential flow, in particular in the clay-illuvial Bt-horizon of Luvisols. The soil organic matter (SOM) composition has been hypothesized to explain temporal changes in the hydraulic properties of aggregate surfaces. The objective of this research was to find relations between the temporal change in wettability, in terms of droplet infiltration dynamics, and the SOM composition of coated and uncoated aggregate surfaces. We used 20 to 40 mm sized soil aggregates from the Bt2 horizon of a Haplic Luvisol from loess that were (i) coated, (ii) not coated (both intact), and (iii) aggregates from which coatings were removed (cut). The SOM composition of the aggregate surfaces was characterized by infrared spectroscopy in the diffuse reflection mode (DRIFT). A potential wettability index (PWI) was calculated from the ratio of hydrophobic and hydrophilic functional groups in SOM. The water drop penetration times (WDPT) and contact angles (CA) during droplet infiltration experiments were determined on dry and moist aggregate samples of the three types. The decrease in the CA with time was described using the power function (CA(t) = at−b). For dry aggregates, the WDPT values were larger for coated as compared to uncoated regions on the aggregate surfaces, and increased with increasing PWI value (R2 = 0.75). The a parameter was significantly related to the WDPT (R2 = 0.84) and to the PWI (R2 = 0.64). The relations between the b parameter and the WDPT (R2 = 0.61) and the PWI (R2 = 0.53) were also significant. The WDPT values of wet soil aggregates were higher than those of dry aggregates due to high water contents, which limited the droplet infiltration potential. At the wet aggregate surfaces, the WDPT values increased with the PWI of the SOM (R2 = 0.64). In contrast to dry samples, no significant relationships were found between parameters a or b of CA(t) and WDPT or PWI for wet aggregate surfaces. The results suggest that the effect of the SOM composition of coatings on surface wettability decreases with increasing soil moisture. In addition to the dominant impact of SOM, the wettability of aggregate surfaces could be affected by different mineralogical compositions of clay in coatings and interiors of aggregates. Particularly, wettability of coatings could be decreased by illite which was the dominant clay type in coatings. However, the influence of different clay mineral fractions on surface wettability was not due to small number of measurements (2 and 1 samples from coatings and interiors, respectively) quantified.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaobing Chen ◽  
Jian Zhao ◽  
Li Chen

In this study, physical experiments and numerical simulations are combined to provide a detailed understanding of flow dynamics in fracture network. Hydraulic parameters such as pressure head, velocity field, Reynolds number on certain monitoring cross points, and total flux rate are examined under various clogging conditions. Applying the COMSOL Multiphysics code to solve the Navier-Stokes equation instead of Reynolds equation and using the measured data to validate the model, the fluid flow in the horizontal 2D cross-sections of the fracture network was simulated. Results show that local clogging leads to a significant reshaping of the flow velocity field and a reduction of the transport capacity of the entire system. The flow rate distribution is highly influenced by the fractures connected to the dominant flow channels, although local disturbances in velocity field are unlikely to spread over the whole network. Also, modeling results indicate that water flow in a fracture network, compared with that in a single fracture, is likely to transit into turbulence earlier under the same hydraulic gradient due to the influence of fracture intersections.


1992 ◽  
Vol 6 (4) ◽  
pp. 413-428 ◽  
Author(s):  
C.J. Van Oss ◽  
R.F. Giese ◽  
Z. Li ◽  
K. Murphy ◽  
J. Norris ◽  
...  

Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 168
Author(s):  
Paiman Shafabakhsh ◽  
Marwan Fahs ◽  
Behzad Ataie-Ashtiani ◽  
Craig T. Simmons

The Elder problem is one of the well-known examples of an unstable density-driven flow (DDF) and solute transport in porous media. The goal of this research is to investigate the influence of fracture networks on this benchmark problem due to the great importance of the fractured heterogeneity effect on unstable DDF. For this aim, the fractured Elder problem is solved using COMSOL Multiphysics, which is a finite element method simulator. Uniform and orthogonal fracture networks are embedded to analyze free convective flow and development of unstable salt plumes. The results indicate that the mesh sensitivity of the fractured Elder problem is greater than the homogeneous case. Furthermore, it has been shown that in the fractured cases, the onset of instability and free convection occur with lower critical Rayleigh number, which means that fracture networks have a destabilizing effect. Also, we examined the structural properties of fracture networks that control convective flow patterns, and the simulation results show that the strength of convection and instability at the beginning of the intrusion is proportional to the aperture size of the fractures. Moreover, the increase of the fracture’s density leads different modes of transient convective modes, until a specific fracture density after which the transient convective modes become similar to the homogenous case.


Sign in / Sign up

Export Citation Format

Share Document