Geohazard assessment of submarine salt-related thin-skinned faults: Levant Basin, offshore Israel

Author(s):  
May Laor ◽  
Zohar Gvirtzman

<p>The Israeli continental slope is dissected by numerous thin-skinned normal faults, deforming the Pliocene-Quaternary section. This extensional faulting is caused by subsurface deformation of the Messinian salt underlying Pliocene rocks. It began in the early Gelasian, at 2.6 Ma, and it is still active today, as indicated by the ruptured seabed. High-resolution bathymetric data reveal shore-parallel seabed steps reaching heights of a few tens of meters. Considering that since the beginning of faulting the average sedimentation rate (100-400 m/My) exceeds the displacement rate (50-100 m/My), the presence of numerous unburied fault scarps indicates seismic ruptures rather than slow creep. For example, considering recent sedimentation rates as measured in seabed cores (5 cm/ka = 50 m/My), if an earthquake produces a 5-m-high fault scarp, it would take about 100 ky to bury it. These preliminary considerations highlight the importance of hazard assessment for seabed infrastructures.</p><p>The recent development of gas fields offshore Israel, as well as the increasing number of planned infrastructures on the seafloor requires a risk assessment, geohazard management, and particularly accurate mapping of faults. Unlike onshore geohazard management, there is no statutory fault map for offshore Israel. Moreover, 'active' and 'potentially active' faults in the offshore area are still not defined. The purpose of this study is to prepare a fault map and discuss criteria for defining the level of fault activity in the marine environment. To accomplish this goal, we use high-resolution bathymetric data and 3D seismic surveys, allowing 3D mapping of faults much better than usually possible onshore.</p><p>For bathymetry, we developed an algorithm, which automatically calculates the height of fault scars along predefined segments. Results indicate higher faults scarps in the north, consistent with extension measurement and steepness of the continental slope that also increases northward. A 3D mapping of fault planes shows that (1) many small faults at the seabed are actually segments of a major fault. This allows reducing the total number of faults to a few large ones. (2) A significant fault can be hidden below the surface with no bathymetric expression. (3) The structure of a seismic reflector dated to 350 ka emphasizes areas with greater recent activity much better than the best available bathymetric data. This allows a quick way to focus on hazardous areas. The next stage of the research will be to measure the area of fault planes and calculate potential earthquake magnitudes. Altogether, we point out the advantage of 3D seismic mapping for geohazard assessment.</p>

2020 ◽  
Author(s):  
Nico D'Intino

<p>Extension in rift zones and passive margins often occur by multiphase normal faulting which usually accommodates several episodes of lithosphere stretching by brittle deformation. In these settings, pre-existing normal faults may reactivate but also new-formed structures may nucleate, with multiple orientations and deformational styles. The various modes of fault growth and nucleation are strongly influenced by several parameters (including orientation and geometry of pre-existing discontinuities, stress orientation and magnitude, strain rates, confining pressure, etc..) with the lithostratigraphy controlling the brittle or ductile litho-mechanic behavior of each unit.</p><p>In this work, we interpreted and analyzed an industrial 3D seismic volume acquired in the Exmouth Plateau, (Northern Carnarvon Basin – offshore NW Australia), where pre-existing Mesozoic normal faults were reactivated during the Cenozoic and controlled the nucleation and growth of the new-formed overlying fault segments. The peculiarity of this system is that the two sets of faults are separated by a ductile interval of shales. The latter acted as decollement level and promoted the formation of prominent faulted anticlines in the overlying brittle sequence; these forced folds are poorly documented in other extensional settings while are common where salt layers are present. In this study, the high-resolution techniques adopted for seismic data interpretation aimed to understand the geometries of faults and their interactions in fine detail. The results of fault analysis suggest that the use of high-quality 3D seismic volumes is very useful to unravel the complex and subtle spatial variability and also the displacement pattern of faults with a limited amount of fault-throw.</p>


Author(s):  
Farhan Ahmed Khan ◽  
Siti Fahimah Bt M Zohdi ◽  
Quah Khoon Beng ◽  
Haslina Binti Mohamed ◽  
Mohd Azizul Mohd Yahya

2020 ◽  
Author(s):  
Camilla Palmiotto ◽  
Maria Filomena Loreto ◽  
Francesco Muto ◽  
Valentina Ferrante ◽  
Franco Pettenati ◽  
...  

<p>The Western Calabrian margin (Italy) is the most active segment of the Apennine back-arc system, formed in response to the slow Africa – Eurasia convergence. The offshore area represents the transitional region between the arc and the back-arc: it is affected by several fault systems, most of them able to trigger highly destructive earthquakes. Indeed, the Calabria and its western offshore are characterized by the highest seismic moment release of the entire Apennines, also evidenced by historical seismicity catalogue, the most accurate over the world. During last decades, scientific community invested huge resources in assessment of seismic and tsunami hazards. Furthermore, during last years several local-scale works allowed of improving knowledge of the faults geometry, magmatism, seismogenic and tsunamigenic potential along the western offshore region (Loreto et al., 2017; Brutto et al., 2016; De Ritis et al., 2019). Some active faults, belonging to NE-SW-trending normal fault systems accommodating the inner-arc collapse related to slab-decupling, are also responsible of the most destructive historical sequences, still to be adequately characterized. Using vintage SPARKER 30 Kj acquired in the seventies and recent multichannel seismic profiles together with middle resolution morpho-bathymetric data we produced a new tectonic map of the Calabria back-arc system. Further, we characterized some before-unknown faults and linked them with shallow structures, as ridges and slumps / slides. This area seemingly less populated of faults compared to the peri-Tyrrhenian margin, where several faults belong to different systems, i.e. (i) the rifting system active that allowed the opening of the Tyrrhenian Basin and (ii) the slab-decupling related normal faults system currently active. The comparison with historical and instrumental seismicity allowed us to highlight possible seismic gaps that, if considered, could strongly improve the map of seismogenic potential of the Tyrrhenian back-arc system.</p><p> </p><p>Bibliography</p><p>Brutto, F. et al. (2016). The Neogene-Quaternary geodynamic evolution of the central Calabrian Arc: A case study from the western Catanzaro Trough basin. Journal of Geodynamics, 102, 95-114.</p><p>Loreto, M. F. (2017). Reconstructed seismic and tsunami scenarios of the 1905 Calabria earthquake (SE Tyrrhenian sea) as a tool for geohazard assessment. Engineering geology, 224, 1-14.</p><p>Tripodi, V. et al. (2018). Neogene-Quaternary evolution of the forearc and backarc regions between the Serre and Aspromonte Massifs, Calabria (southern Italy). Marine and Petroleum Geology, 95, 328-343.</p>


2021 ◽  
Author(s):  
Ulysse Lebrec ◽  
Victorien Paumard ◽  
Michael J. O'Leary ◽  
Simon C. Lang

Abstract. High-resolution bathymetry is a critical dataset for marine geoscientists. It can be used to characterize the seafloor and its marine habitats, to understand past sedimentary records and even to support the development of offshore engineering projects. Most methods to acquire bathymetry data are costly and can only be practically deployed on relatively small areas. It is therefore critical to develop cost-effective and advanced techniques to produce large-scale bathymetry datasets. This paper presents an integrated workflow that builds on satellites images and 3D seismic surveys, integrated with historical depth soundings, to generate a regional high-resolution digital elevation model. The method was applied to the southern half of Australia's North West Shelf and led to the creation of a new high-resolution bathymetry, with a resolution of 10 × 10 m in nearshore areas and 30 × 30 m elsewhere. The vertical and spatial accuracy of the datasets have been thoroughly assessed using open source Laser Airborne Depth Sounder (LADS) and Multi Beam Echo Sounder (MBES) surveys as a reference. The comparison of the datasets indicates that the seismic-derived bathymetry has a vertical accuracy better than 1 m + 2 % of the absolute water depths, while the satellite-derived bathymetry has a depth accuracy better than 1 m + 5 % of the absolute water depths. This dataset constitutes a significant improvement of the pre-existing regional 250 × 250 m grid and will support the onset of research projects on costal morphologies, marine habitats, archaeology, and sedimentology. All datasets used as inputs are publicly available and the method is fully integrated in Python scripts making it readily applicable elsewhere in Australia and around the world. The workflow as well as the resulting bathymetry have been independently reviewed and approved for release by a technical committee from the AusSeabed Community (Geoscience Australia). The regional digital elevation model as well as the underlying datasets can be accessed at: https://doi.org/10.26186/144600.


2021 ◽  
Vol 11 (11) ◽  
pp. 5156
Author(s):  
Abd Al-Salam Al-Masgari ◽  
Mohamed Elsaadany ◽  
Numair A. Siddiqui ◽  
Abdul Halim Abdul Latiff ◽  
Azli Abu Bakar ◽  
...  

This study identified the Pleistocene depositional succession of the group (A) (marine, estuarine, and fluvial depositional systems) of the Melor and Inas fields in the central Malay Basin from the seafloor to approximately −507 ms (522 m). During the last few years, hydrocarbon exploration in Malay Basin has moved to focus on stratigraphic traps, specifically those that existed with channel sands. These traps motivate carrying out this research to image and locate these kinds of traps. It can be difficult to determine if closely spaced-out channels and channel belts exist within several seismic sequences in map-view with proper seismic sequence geomorphic elements and stratigraphic surfaces seismic cross lines, or probably reinforce the auto-cyclic aggregational stacking of the avulsing rivers precisely. This analysis overcomes this challenge by combining well-log with three-dimensional (3D) seismic data to resolve the deposition stratigraphic discontinuities’ considerable resolution. Three-dimensional (3D) seismic volume and high-resolution two-dimensional (2D) seismic sections with several wells were utilized. A high-resolution seismic sequence stratigraphy framework of three main seismic sequences (3rd order), four Parasequences sets (4th order), and seven Parasequences (5th order) have been established. The time slice images at consecutive two-way times display single meandering channels ranging in width from 170 to 900 m. Moreover, other geomorphological elements have been perfectly imaged, elements such as interfluves, incised valleys, chute cutoff, point bars, and extinction surfaces, providing proof of rapid growth and transformation of deposits. The high-resolution 2D sections with Cosine of Phase seismic attributes have facilitated identifying the reflection terminations against the stratigraphic amplitude. Several continuous and discontinuous channels, fluvial point bars, and marine sediments through the sequence stratigraphic framework have been addressed. The whole series reveals that almost all fluvial systems lay in the valleys at each depositional sequence’s bottom bars. The degradational stacking patterns are characterized by the fluvial channels with no evidence of fluvial aggradation. Moreover, the aggradation stage is restricted to marine sedimentation incursions. The 3D description of these deposits permits distinguishing seismic facies of the abandoned mud channel and the sand point bar deposits. The continuous meandering channel, which is filled by muddy deposits, may function as horizontal muddy barriers or baffles that might isolate the reservoir body into separate storage containers. The 3rd, 4th, and 5th orders of the seismic sequences were established for the studied succession. The essential geomorphological elements have been imaged utilizing several seismic attributes.


2013 ◽  
Vol 543 ◽  
pp. 35-38 ◽  
Author(s):  
Masaaki Futamoto ◽  
Tatsuya Hagami ◽  
Shinji Ishihara ◽  
Kazuki Soneta ◽  
Mitsuru Ohtake

Effects of magnetic material, coating thickness, and tip radius on magnetic force microscope (MFM) spatial resolution have been systematically investigated. MFM tips are prepared by using an UHV sputtering system by coating magnetic materials on non-magnetic Si tips employing targets of Ni, Ni-Fe, Co, Fe, Fe-B, and Fe-Pd. MFM spatial resolutions better than 9 nm have been confirmed by employing magnetic tips coated with high magnetic moment materials with optimized thicknesses.


Sign in / Sign up

Export Citation Format

Share Document