Assessing reliability of HRM sap-flow sensors under large range of vapor pressure deficit

Author(s):  
Rémy Schoppach ◽  
Daniella Ekwalla Hangue ◽  
Julian Klaus

<p>Evapotranspiration (ET) is a major water flux of ecosystems and represents globally 60-80% of the incoming precipitation lost by terrestrial environments. In forested lands, tree transpiration (TR) is the dominant component of ET, yet remains challenging to measure. Over the years, sap-flow sensors have become the standard tool for quantifying tree TR and different methods based on thermal approaches have been developed. Heat ratio methods (HRM) are considered as the most reliable and accurate method to quantify absolute flows. Leading commercial brands ensure an accurate measurement of positive flows up to 100 cm hr<sup>-1</sup> but different studies have highlighted a saturation effect at high flows with threshold for accuracy remaining elusive[RS1] . Due to climate change, the occurrence, the severity and the duration of extreme events like heat waves and dry periods are expected to increase in future, so the potential for high TR rate periods will also increase. Therefore, it is crucial to determine the species-specific environmental conditions allowing a reliable measurement of TR in order to improve or understanding of eco-hydrological and physiological processes during high potential TR periods that can be crucial for vegetation survival. In this study, we tested the accuracy of HRM sap-flow sensors for beech (Fagus sylvatica) and oak (Quercus robur) tree species under extreme vapor pressure deficit (VPD) conditions in order to determine threshold for reliable measurements. In greenhouse conditions, we collected a complete and dense series of TR response to VPD between 0.7 to 8.3 kPa for potted beech and oak trees using three different methods: infrared gas analyser, gravimetric method, and HRM sap-flow sensors. Responses shown a linear trend at the low-canopy leaf level (41.5 and 45.1 mg H<sub>2</sub>O m<sup>-2</sup> s<sup>-1</sup> kPa<sup>-1</sup> respectively for beech and oak) but a bi-linear conformation at the whole plant level (1<sup>st</sup> slope = 12.04 ± 0.7 mg H<sub>2</sub>O m<sup>-2</sup> s<sup>-1</sup> kPa<sup>-1</sup> and break-point at 3.9 ± 0.07 kPa for beech trees). Sap-flow sensors using the HRM method displayed a clear inability to reliably measure flows under high VPD conditions. Thresholds of 2.25 ± 0.04 and 2.87 ± 0.14 kPa were identified as the maximum limit of method reliability for beech and oak respectively. In highly demanding environments, we suggest a bi-linear extrapolation beyond VPD threshold for better quantifying tree TR. Further experiments aiming at characterizing TR responses to VPD for a broad range of species and in different water deficit conditions are certainly needed for better understanding tree transpiration at the whole stand level.</p>

Trees ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 961-972 ◽  
Author(s):  
Adrien Guyot ◽  
Kasper T. Ostergaard ◽  
Junliang Fan ◽  
Nadia S. Santini ◽  
David A. Lockington

2015 ◽  
Author(s):  
Adam Roddy ◽  
Klaus Winter ◽  
Todd Dawson

Continuous measurements of sap flow have been widely used to estimate water flux through tree stems and branches. However, stem-level measurements lack the resolution necessary for accurately determining fine-scale, leaf-level responses to environmental variables. We used the heat ratio method to measure sap flow rates through leaf petioles and leaflet petiolules of saplings of the tropical tree Tabebuia rosea (Bignoniaceae) to determine how leaf and leaflet sap flow responds to variation in photosynthetically active radiation (PAR) and vapor pressure deficit (VPD). In the morning sap flow rates to east-facing leaves increased 26 minutes before adjacent west-facing leaves. Integrated daily sap flow was negatively correlated with daily mean VPD, and sap flow declined when VPD exceeded 2.2 kPa whether this occurred in the morning or afternoon, consistent with a feedforward response to humidity. Indeed, changes in VPD lagged behind changes in sap flow. In contrast, changes in PAR often preceded changes in sap flow. The sap flow-VPD relationship was characterized by two distinct patterns of hysteresis, while the sap flow-PAR relationship displayed three types of hysteresis, and the type of VPD hysteresis that occurred on a given day was correlated with the type of PAR hysteresis occurring on that day. These patterns highlight how multiple environmental drivers interact to control leaf sap flux and that the development of sap flow sensors capable of measuring individual leaves could drastically influence the amount of data recordable for these structures.


2013 ◽  
Author(s):  
Adam Roddy ◽  
Klaus Winter ◽  
Todd Dawson

Continuous measurements of sap flow have been widely used to measure water flux through tree stems and branches. However, these measurements lack the resolution necessary for determining fine-scale, leaf-level responses to environmental variables. We used the heat ratio method to measure sap flow rates through leaf petioles and leaflet petiolules of saplings of the tropical tree Tabebuia rosea (Bignoniaceae) to determine how leaf and leaflet sap flow responds to variation in light and vapor pressure deficit (VPD). We found that in the morning sap flow rates to east-facing leaves increased 26 minutes before adjacent west-facing leaves. Although leaves had higher integrated sap flow than their largest leaflet, this difference was not proportional to the difference in leaf area, which could be due to lower conduit area in petiolules than in petioles. In contrast to measurements on main stems, integrated daily sap flow was negatively correlated with daily mean VPD. Furthermore, leaves exhibited previously undescribed patterns of hysteresis in the sap flow-VPD and sap flow-PAR relationships. When hysteresis in the sap flow-PAR relationship was clockwise, the sap flow-VPD relationship was also clockwise; however, when hysteresis in the sap flow-PAR relationship was counterclockwise, the sap flow-VPD relationship displayed an intersected loop. These pattern differences highlight how substantially leaf-level processes may vary within a canopy and how leaf-level processes may not scale predictably to the stem level.


2015 ◽  
Author(s):  
Adam Roddy ◽  
Klaus Winter ◽  
Todd Dawson

Continuous measurements of sap flow have been widely used to estimate water flux through tree stems and branches. However, stem-level measurements lack the resolution necessary for accurately determining fine-scale, leaf-level responses to environmental variables. We used the heat ratio method to measure sap flow rates through leaf petioles and leaflet petiolules of saplings of the tropical tree Tabebuia rosea (Bignoniaceae) to determine how leaf and leaflet sap flow responds to variation in photosynthetically active radiation (PAR) and vapor pressure deficit (VPD). In the morning sap flow rates to east-facing leaves increased 26 minutes before adjacent west-facing leaves. Integrated daily sap flow was negatively correlated with daily mean VPD, and sap flow declined when VPD exceeded 2.2 kPa whether this occurred in the morning or afternoon, consistent with a feedforward response to humidity. Indeed, changes in VPD lagged behind changes in sap flow. In contrast, changes in PAR often preceded changes in sap flow. The sap flow-VPD relationship was characterized by two distinct patterns of hysteresis, while the sap flow-PAR relationship displayed three types of hysteresis, and the type of VPD hysteresis that occurred on a given day was correlated with the type of PAR hysteresis occurring on that day. These patterns highlight how multiple environmental drivers interact to control leaf sap flux and that the development of sap flow sensors capable of measuring individual leaves could drastically influence the amount of data recordable for these structures.


2021 ◽  
Vol 11 (11) ◽  
pp. 4729
Author(s):  
Davide Amato ◽  
Giuseppe Montanaro ◽  
Filippo Vurro ◽  
Nicola Coppedé ◽  
Nunzio Briglia ◽  
...  

Research on organic electrochemical transistor (OECT) based sensors to monitor in vivo plant traits such as xylem sap concentration is attracting attention for their potential application in precision agriculture. Fabrication and electronic aspects of OECT have been the subject of extensive research while its characterization within the plant water relation context deserves further efforts. This study tested the hypothesis that the response (R) of an OECT (bioristor) implanted in the trunk of olive trees is inversely proportional to the water flux density flowing through the plant (Jw). This study also examined the influence on R of vapor pressure deficit (VPD) as coupled/uncoupled with light. R was hourly recorded in potted olive trees for a 10-day period concomitantly with Jw (weight loss method). A subgroup of trees was bagged in order to reduce VPD and in turn Jw, and other trees were located in a walk-in chamber where VPD and light were independently managed. R was tightly sensitive to diurnal oscillation of Jw and at negligible values of Jw (late afternoon and night) R increased. The bioristor was not sensitive to the VPD per se unless a light source was coupled to trigger Jw. This study preliminarily examined the suitability of bioristor to estimate the mean daily nutrients accumulation rate (Ca, K) in leaves comparing chemical and sensor-based procedures showing a good agreement between them opening new perspective towards the application of OECT sensor in precision agricultural cropping systems.


2017 ◽  
Vol 109 (3) ◽  
pp. 1122-1128 ◽  
Author(s):  
Yueyue Wang ◽  
Xiao Zhang ◽  
Xinhua Xiao ◽  
Joshua Heitman ◽  
Robert Horton ◽  
...  

2013 ◽  
pp. 25-30 ◽  
Author(s):  
T. Anfodillo ◽  
G. Petit ◽  
V. Carraro

Sensors ◽  
2012 ◽  
Vol 12 (1) ◽  
pp. 954-971 ◽  
Author(s):  
Tyler W. Davis ◽  
Chen-Min Kuo ◽  
Xu Liang ◽  
Pao-Shan Yu

HortScience ◽  
2000 ◽  
Vol 35 (5) ◽  
pp. 833-836 ◽  
Author(s):  
Patricia R. Knight ◽  
J. Roger Harris ◽  
Jody K. Fanelli

Root severance during field harvesting alters the water status of a tree, resulting in water stress and reduced post-transplant growth. Two experiments, using Acer rubrum L. (red maple), determined the influence of root severance at harvest on sap flow and xylem embolism. Trees 1.5–1.8 m tall (4 years old) were utilized in the first experiment, and trees 1.2–1.5 m tall (2 years old) were utilized in the second. Sap flow sensors were installed on the 4-year-old trees prior to root severance and remained on the trees until 1 week after harvest. Within 1 day after root severance sap flow was reduced and remained lower than nontransplanted (control) trees for the remainder of the experiment. Leaf stomatal conductance (Cs) of transplanted trees 1 week after root severance was lower than that of control trees, but leaf water potentials (ψ) were similar. In the second experiment, sap flow was reduced relative to control trees within 2 h after root severance. Although Cs was reduced 4 hours after root severance, ψ was not. Embolism increased within 24 hours of root severance. These results indicate that root severance quickly induces increased levels of embolism, which is associated with reduced sap flow.


Sign in / Sign up

Export Citation Format

Share Document