Quantifying the effects of urban vegetation on water partitioning in complex cityscapes: the potential of isotope-based ecohydrological models

Author(s):  
Mikael Gillefalk ◽  
Dörthe Tetzlaff ◽  
Reinhard Hinkelmann ◽  
Lena-Marie Kuhlemann ◽  
Aaron Smith ◽  
...  

<p>The continued global acceleration of urbanisation increasingly requires sustainable, adaptive management strategies for land and water use in cities. Although the effects of buildings and sealed surfaces on urban runoff generation (via storm drains) and local climate (through the urban heat island effect) are well known, much less is known about how these artificial influences integrate with water partitioning in more natural urban green spaces. In particular, little is quantitatively known about how different types of urban green spaces (lawns, parks, woodland etc.) regulate the partitioning of evaporation, transpiration and groundwater recharge. To address this crucial issue, we integrated field observations with advanced, isotope-based ecohydrological modelling at the plot scale in the urban area of Berlin, Germany. Measurements of soil moisture, sap flow, and stable isotopes in precipitation, soil water and groundwater have been made over the course of one growing season. Additionally, an eddy flux tower at the site Rothenburgstraße in Berlin-Steglitz continuously collects hydroclimate data by measuring temperature, precipitation, radiation, humidity and wind speed at high temporal resolution. These data (30-min averages) have been used as input to, and for calibration of, the process-based ecohydrological model EcH<sub>2</sub>O-iso. The model also tracks stable isotope ratios and water ages in various stores (e.g. soils and groundwater) and fluxes (evaporation, transpiration and recharge). EcH<sub>2</sub>O-iso has successfully been used to describe the effects of vegetation cover on water partitioning in a number of studies but this is the first implementation in an urban setting. It shows that ecohydrological water use by vegetation type increases in the order forests > shrubs > grass, mainly through higher interception and transpiration. Accordingly, trees can reduce groundwater recharge by >50%, but provide cooling latent heat transfers to the atmosphere.  Similarly, ages of stored water and fluxes are generally greater under trees than grass. The results, which form the basis for future upscaling, show that urban green spaces play an important role in urban hydrology and in Berlin there is a trade-off between moderating the urban heat island effect and maintaining groundwater recharge. Consequently, it is clear that vegetation management needs to be considered in sustainable water and land use planning in urban areas to build resilience in cities to climatic and other environmental change.</p>

2021 ◽  
Author(s):  
Xiangdong Xiao ◽  
Lulu Zhang ◽  
Yimei Xiong

Abstract Continuous urban development leads to urban heat island effects. Research suggests that urban green spaces can help effectively reduce urban heat island effects in the summer. Previous studies have mainly focused on the influence of different underlying surfaces on air cooling and humidification. There is a lack of in-depth research on the relationship between park structure and microclimatic effects. Here, we examined the main landscape parameters of green spaces in 15 parks located in Suzhou Industrial Park (SIP) with a subtropical maritime monsoon climate zone during the summer to analyze their influence on the microclimate. The average cooling and humidifying effect of medium-size green spaces was most significant during high-temperature hours in the daytime. When the distance to a water body was the same, the average cooling and humidifying effect ranked as follows: large-size green space > small-size green space > medium-size green space. We explored the mechanisms of the local cooling and humidifying effects of woodland and water areas in parks by numerical simulations. The significance of the cooling and humidifying effects of water areas of different shapes was as follows: annular water > massive water > banded water. This confirmed that the shape and size of water areas within a green space has a significant influence on local cooling and humidification.


2021 ◽  
Vol 13 (22) ◽  
pp. 4601
Author(s):  
Liang Yan ◽  
Wenxiao Jia ◽  
Shuqing Zhao

Urban green spaces have many vital ecosystem services such as air cleaning, noise reduction, and carbon sequestration. Amid these great benefits from urban green spaces, the cooling effects via shading and evapotranspiration can mitigate the urban heat island effect. The impact of urban green spaces (UGSs) on the urban thermal environment in Beijing was quantified as a case study of metacities using four metrics: Land surface temperature (LST), cooling intensity, cooling extent, and cooling lapse. Three hundred and sixteen urban green spaces were extracted within the 4th ring road of Beijing from SPOT 6 satellite imagery and retrieved LST from Landsat 8 remote sensing data. The results showed that the cooling intensity of green spaces was generally more prominent in the areas with denser human activities and higher LST in this metacity. Vegetation density is always the dominant driver for the cooling effect indicated by all of the metrics. Furthermore, the results showed that those dispersive green spaces smaller than 9 ha, which are closely linked to the health and well-being of citizens, can possess about 6 °C of cooling effect variability, suggesting a great potential of managing the layout of small UGSs. In addition, the water nearby could be introduced to couple with the green and blue space for the promotion of cooling and enhancement of thermal comfort for tourists and residents. As the severe urban heating threatens human health and well-being in metacities, our findings may provide solutions for the mitigation of both the urban heat island and global climate warming of the UGS area customized cooling service.


2020 ◽  
Author(s):  
Lena-Marie Kuhlemann ◽  
Doerthe Tetzlaff ◽  
Birgit Kleinschmit ◽  
Stenka Vulova ◽  
Chris Soulsby

<p>Urban areas, more than many experimental catchments, are characterized by a markedly heterogeneous distribution of land covers, with different degrees of permeability that radically vary partitioning of precipitation into evapotranspiration (“green” water fluxes) and runoff and groundwater recharge (“blue” water fluxes). While the quantification of ecohydrological fluxes using stable isotopes in water as environmental tracers has been an established method for many years, surprisingly few studies have been applied to the highly complex urban water cycle. To determine the effects of representative urban green space “types” on water partitioning, we carried out plot-scale studies at a heterogenous field site in Berlin-Steglitz that integrates climate, soil moisture and sap flow data, with isotope sampling of precipitation and soil moisture on a regular basis. Soil moisture and isotope measurements were conducted at different depths and under contrasting soil-vegetation units (grassland, trees, shrub) with different degrees of permeability. Our investigations revealed uniformly decreasing soil moisture content during the dry summer of 2019, with only temporary re-wetting of the uppermost soil layers despite heavy convective precipitation events. Soils under trees were driest, whilst grassland soils were wettest, with shrubs intermediate. Isotope-based modelling indicated that this was the result, of greater interception, transpiration and – surprisingly – soil evaporation from forest sites. The isotope signatures of soil water also revealed stronger “memory effects” of summer drying in forest soils, which persisted until the major re-wetting of the system in autumn allowed drainage from the soil profile to contribute to groundwater recharge. Modelling showed that recharge under grasslands could be over 3 times higher compared to under trees and shrubs. Upscaling these findings with large-scale isotope studies of surface and groundwater across Berlin highlights the importance of the vegetation in urban green spaces to water partitioning in heterogeneous city landscapes and the need for careful integration of vegetation management in urban water and land use planning.</p>


Author(s):  
Yunfang Jiang ◽  
Jing Huang ◽  
Tiemao Shi ◽  
Hongxiang Wang

The spatial morphology of waterfront green spaces helps generate cooling effects to mitigate the urban heat island effect (UHI) in metropolis cities. To explore the contribution and influence of multi-dimensional spatial indices on the mitigation of UHIs, the green space of the riparian buffer along 18 river channels in Shanghai was considered as a case study. The spatial distribution data of the land surface temperature (LST) in the study area were obtained by using remote sensing images. By selecting the related spatial structure morphological factors of the waterfront green space as the quantitative description index, the growth regression tree model (BRT) was adapted to analyze the contribution of various indexes of the waterfront green space on the distribution of the LST and the marginal effect of blue–green synergistic cooling. In addition, mathematical statistical analysis and spatial analysis methods were used to study the influence of the morphological group (MG) types of riparian green spaces with different morphological characteristics on the LST. The results showed that in terms of the spatial structure variables between blue and green spaces, the contribution of river widths larger than 30 m was more notable in decreasing the LST. In the case of a larger river width, the marginal effect of synergistic cooling could be observed in farther regions. The green space that had the highest connectivity degree and was located in the leeward direction of the river exhibited the lowest LST. In terms of the spatial morphology, the fractional cover values of the vegetation (Fv) and area (A) of the green space were the main factors affecting the cooling effect of the green space. For all MG types, a large green patch that had a high green coverage and connectivity degree, as well as was distributed in the leeward direction of the river, corresponded to the lowest LST. The research presented herein can provide methods and development suggestions for optimizing spatial thermal comfort in climate adaptive cities.


Sign in / Sign up

Export Citation Format

Share Document