water partitioning
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 58)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Rachel Louise Gomes ◽  
Andrea-Lorena Garduño-Jiménez ◽  
Juan-Carlos Duran-Alavrez

Author(s):  
Ido Rog ◽  
Christina Tague ◽  
Gilad Jakoby ◽  
Shacham Megidish ◽  
Assaf Yaakobi ◽  
...  

2021 ◽  
Vol 6 ◽  
pp. 37-42
Author(s):  
Huynh Thi Thu Huong ◽  
Nguyen Huu Quang ◽  
Le Van Son ◽  
Tran Trong Hieu

The oil/water partitioning components such as alkylphenols and aliphatic acids naturally exist in crude oil compositions at different initial concentrations of hundreds or even thousands of ppm depending on the location of the reservoir compared to the site of original rocks. During contact with sweeping injection brine, those compounds diffuse from oil phase to water phase due to oil/water partitioning behaviours. As a result, their concentration in oil contacting with water will be attenuating during water injection. Their concentration profile in water injection history contains the information related to diffusion in oil and water phase, interstitial velocity of water and oil saturation. This paper presents the research results of theoretical model and numerical model of the washed-out process of alkylphenols in the late stage of water injection. The research results have proposed approximate analytical expression for concentration of alkylphenols at the late stage of water flooding. In this regard, at the sufficient large injection volume the alkylphenol concentration attenuates exponentially and the attenuation rate depends on parameters such as partitioning coefficient, oil saturation and interstitial velocity of water and oil and diffusion coefficients. The simulation concentration results obtained from UTCHEM simulator for the 5-spot model showed a good match with analytical calculation results. The research results can be used as the basis for developing methods to assess water flooding systems as well as oil saturation. The results can also be used for study of transport of non-aqueous phase liquid (NAPL) in environmental contamination. Keywords: Residual oil saturation, waterflooding, tracer, partitioning organic compounds, enhanced oil recovery.


2021 ◽  
Vol 25 (6) ◽  
pp. 3635-3652
Author(s):  
Mikael Gillefalk ◽  
Dörthe Tetzlaff ◽  
Reinhard Hinkelmann ◽  
Lena-Marie Kuhlemann ◽  
Aaron Smith ◽  
...  

Abstract. The acceleration of urbanization requires sustainable, adaptive management strategies for land and water use in cities. Although the effects of buildings and sealed surfaces on urban runoff generation and local climate are well known, much less is known about the role of water partitioning in urban green spaces. In particular, little is quantitatively known about how different vegetation types of urban green spaces (lawns, parks, woodland, etc.) regulate partitioning of precipitation into evaporation, transpiration and groundwater recharge and how this partitioning is affected by sealed surfaces. Here, we integrated field observations with advanced, isotope-based ecohydrological modelling at a plot-scale site in Berlin, Germany. Soil moisture and sap flow, together with stable isotopes in precipitation, soil water and groundwater recharge, were measured over the course of one growing season under three generic types of urban green space: trees, shrub and grass. Additionally, an eddy flux tower at the site continuously collected hydroclimate data. These data have been used as input and for calibration of the process-based ecohydrological model EcH2O-iso. The model tracks stable isotope ratios and water ages in various stores (e.g. soils and groundwater) and fluxes (evaporation, transpiration and recharge). Green water fluxes in evapotranspiration increased in the order shrub (381±1mm)<grass(434±21mm)<trees(489±30 mm), mainly driven by higher interception and transpiration. Similarly, ages of stored water and fluxes were generally older under trees than shrub or grass. The model also showed how the interface between sealed surfaces and green space creates edge effects in the form of “infiltration hotspots”. These can both enhance evapotranspiration and increase groundwater recharge. For example, in our model, transpiration from trees increased by ∼ 50 % when run-on from an adjacent sealed surface was present and led to groundwater recharge even during the growing season, which was not the case under trees without run-on. The results form an important basis for future upscaling studies by showing that vegetation management needs to be considered within sustainable water and land use planning in urban areas to build resilience in cities to climatic and other environmental change.


Sign in / Sign up

Export Citation Format

Share Document