scholarly journals Ice-flow and deglacial history of the Laurentide Ice Sheet in the southwestern Great Slave Lake area, Northwest Territories

2019 ◽  
Author(s):  
G W Hagedorn ◽  
M Ross ◽  
R C Paulen ◽  
I R Smith ◽  
C M Neudorf ◽  
...  
2007 ◽  
Vol 47 (2) ◽  
pp. 133-145 ◽  
Author(s):  
Arthur S. Dyke

ABSTRACT Lowther and Griffith islands, in the centre of Parry Channel, were overrun by the Laurentide Ice Sheet early in the last glaciation. Northeastward Laurentide ice flow persisted across at least Lowther Island until early Holocene déglaciation. Well constrained postglacial emergence curves for the islands confirm a southward dip of raised shorelines, contrary to the dip expected from the ice load configuration. This and previously reported incongruities may indicate regionally extensive tectonic complications of postglacial rebound aligned with major structural elements in the central Canadian Arctic Islands.


2008 ◽  
Vol 45 (5) ◽  
pp. 593-610 ◽  
Author(s):  
Jan M. Bednarski

The Laurentide Ice Sheet reached the Canadian Cordillera during the last glacial maximum in northeastern British Columbia and adjacent Northwest Territories and all regional drainage to unglaciated areas in the north was dammed by the ice. Converging ice-flow patterns near the mountain front suggest that the Laurentide Ice Sheet likely coalesced with the Cordilleran Ice Sheet during the last glaciation. With deglaciation, the ice masses separated, but earlier ice retreat in the south meant that meltwater pooled between the mountain front and the Laurentide margin. The level of the flooding was controlled by persistent ice cover on the southern Franklin Mountains. Glacial Lake Liard formed when the Laurentide Ice Sheet retreated east of the southern Liard Range and, at its maximum extent, may have impounded water at least as far south as the Fort Nelson River. Deglaciation of the plains was marked by local variations in ice flow caused by a thin ice sheet becoming more affected by the topography and forming lobes in places. These lobes caused diversions in local drainage readily traced by abandoned meltwater channels. Radiocarbon ages from adjacent areas suggest the relative chronology of deglaciation presented here occurred between 13 and 11 ka BP.


2021 ◽  
Author(s):  
I R Smith ◽  
R C Paulen ◽  
G W Hagedorn

The northeastern Cameron Hills comprise a Cretaceous bedrock upland, rising >550 m above the regional boreal plains. It was inundated by the Laurentide Ice Sheet and includes much of a prominent 60 by 20 km southwest-oriented mega-scale glacial lineation field, formed in thick till. Subsequent ice flow on northeast Cameron Hills occurred north to south, and a series of lobate and ice-thrust moraines suggest glacial surging. Rotational bedrock slumps cover the eastern and northern flanks of Cameron Hills, and extensive alluvial fan deposits draining from these slopes blanket the surrounding topography. The Cameron River formed as a glacial spillway, draining southwest across the upland before turning north and draining into Tathlina Lake. An expansive raised delta and glaciolacustrine sediment cover extending up to ~295 m above sea level, south of Tathlina Lake, records impoundment of an ice-marginal lake between the northeastward-retreating Laurentide Ice Sheet and Cameron Hills.


2020 ◽  
Author(s):  
Samuel E. Kelley ◽  
Brent Ward ◽  
Jason Briner ◽  
Martin Ross ◽  
Philippe Normandeau ◽  
...  

<p>The Laurentide Ice Sheet (LIS) during the Pleistocene-Holocene transition provides a useful natural laboratory for examining the behavior of a mid- to high-latitude ice sheet during a period of climatically driven ice sheet thinning and retreat. While the timing and pattern of Pleistocene recession of the LIS are well-constrained along the southern and eastern margins, there is limited chronology constraining the ice margin retreat along the northwestern margin. Here we present new cosmogenic <sup>10</sup>Be exposure ages retreat of the western margin of the LIS during the Pleistocene-Holocene transition. Sampling was performed along three transects located between the northern shore of Great Slave Lake and Lac de Gras. Each of the transects is oriented parallel to the inferred ice retreat direction in an attempt to capture a regional rate of retreat. Our new <sup>10</sup>Be cosmogenic exposure ages from the southeastern Northwest Territories demonstrate that regional deglaciation occurred around 11,000 years ago. The population of ages broadly overlaps, indicating that either the retreat occurred within the resolution of our chronology or that the ice sheet experienced widespread stagnation and rapid down-wasting. These ages, not corrected for changes in atmospheric depth due to isostatic rebound, are older than minimum limiting radiocarbon constraints by ~1000 years, indicating that existing LIS reconstructions may underestimate the timing and pace of ice margin recession for this sector. Constraining the timing of the recession of the northwest sector of the LIS has the potential to inform our understanding about the damming of large proglacial lakes, such as Glacial Lake McConnell. The ages from our southern transect, collected from elevated bedrock hills, indicate LIS retreat from through the McConnell basin occurred after 12,000 years ago, and thus constitute maximum limiting constraints on the expansion of Glacial Lake McConnell southeastward into the present-day Great Slave Lake basin. Our chronology, combined with other emerging cosmogenic exposure ages constraining LIS deglaciation indicates retreat of the ice margin over 100s of kilometres during the Pleistocene-Holocene transition, exhibiting no evidence of a significant readvance during the Younger Dryas stadial.</p>


1993 ◽  
Vol 30 (8) ◽  
pp. 1697-1707 ◽  
Author(s):  
Rémi Charbonneau ◽  
Peter P. David

The lithological content of tills in central Gaspésie is evaluated by pebble counting of 231 samples collected in excavation pits and containing 200 pebbles each. The results are used here to establish the pattern of debris dispersal and to infer the glacial history of the area. The dispersal pattern is characterized by well-defined southeasterly (160–170°) and northeasterly (40–60°) trending trains. Half-distance values of glacial transport along the trains range from 5 to 9 km for both directions, suggesting ice flow events of considerable magnitude. The volume of material in the trains represents 1–6 m of glacial erosion of the bedrock. Glacial cirques and short U-shaped valleys, about 100–200 m deep, are incised into the McGerrigle Mountains granite pluton as well as the adjacent metabasalt. The corresponding trains are aligned with these erosional features, indicating that their clast content was derived from those features during an early Alpine Glacier Phase. The southeasterly trending dispersal trains are associated with an invasion of central Gaspésie by the Laurentide Ice Sheet during the Early Wisconsinan, whereas the northeasterly trending trains are associated with a local centre of outflow over Gaspésie during the Late Wisconsinan.


2007 ◽  
Vol 39 (3) ◽  
pp. 229-238 ◽  
Author(s):  
D. A. Fisher ◽  
N. Reeh ◽  
K. Langley

ABSTRACT A three dimensional steady state plastic ice model; the present surface topography (on a 50 km grid); a recent concensus of the Late Wisconsinan maximum margin (PREST, 1984); and a simple map of ice yield stress are used to model the Laurentide Ice Sheet. A multi-domed, asymmetric reconstruction is computed without prior assumptions about flow lines. The effects of possible deforming beds are modelled by using the very low yield stress values suggested by MATHEWS (1974). Because of low yield stress (deforming beds) the model generates thin ice on the Prairies, Great Lakes area and, in one case, over Hudson Bay. Introduction of low yield stress (deformabie) regions also produces low surface slopes and abrupt ice flow direction changes. In certain circumstances large ice streams are generated along the boundaries between normal yield stress (non-deformable beds) and low yield stress ice (deformabie beds). Computer models are discussed in reference to the geologically-based reconstructions of SHILTS (1980) and DYKE ef al. (1982).


2021 ◽  
Vol 15 (3) ◽  
pp. 1587-1606
Author(s):  
Corinne L. Benedek ◽  
Ian C. Willis

Abstract. Surface lakes on the Greenland Ice Sheet play a key role in its surface mass balance, hydrology and biogeochemistry. They often drain rapidly in the summer via hydrofracture, which delivers lake water to the ice sheet base over timescales of hours to days and then can allow meltwater to reach the base for the rest of the summer. Rapid lake drainage, therefore, influences subglacial drainage evolution; water pressures; ice flow; biogeochemical activity; and ultimately the delivery of water, sediments and nutrients to the ocean. It has generally been assumed that rapid lake drainage events are confined to the summer, as this is typically when observations are made using satellite optical imagery. Here we develop a method to quantify backscatter changes in satellite radar imagery, which we use to document the drainage of six different lakes during three winters (2014/15, 2015/16 and 2016/17) in fast-flowing parts of the Greenland Ice Sheet. Analysis of optical imagery from before and after the three winters supports the radar-based evidence for winter lake drainage events and also provides estimates of lake drainage volumes, which range between 0.000046 ± 0.000017 and 0.0200 ± 0.002817 km3. For three of the events, optical imagery allows repeat photoclinometry (shape from shading) calculations to be made showing mean vertical collapse of the lake surfaces ranging between 1.21 ± 1.61 and 7.25 ± 1.61 m and drainage volumes of 0.002 ± 0.002968 to 0.044 ± 0.009858 km3. For one of these three, time-stamped ArcticDEM strips allow for DEM differencing, which demonstrates a mean collapse depth of 2.17 ± 0.28 m across the lake area. The findings show that lake drainage can occur in the winter in the absence of active surface melt and notable ice flow acceleration, which may have important implications for subglacial hydrology and biogeochemical processes.


Sign in / Sign up

Export Citation Format

Share Document