Photochemical aging of organic aerosols at temperatures between 213 K and 293 K

Author(s):  
Magdalena Vallon ◽  
Linyu Gao ◽  
Junwei Song ◽  
Feng Jiang ◽  
Harald Saathoff

<p>The chemical composition of aerosols, in both gas and particle phase, is an important factor regarding their properties influencing weather, climate and human health. Organic compounds are a major fraction of atmospheric aerosols and their composition depends on chemical processing by atmospheric oxidants and photochemical reactions. These processes are complex due to the abundance of possible reactions and reaction partners and rarely studied over a wider range of atmospheric temperatures. To get a better understanding of photochemical processes in the atmosphere we studied different organic test aerosols from simple to more complex systems between 213 K and 293 K in the AIDA simulation chamber at the Karlsruhe Institute of Technology.  Photochemical reactions were studied using a new LED light-source simulating solar radiation in the UV and visible. The organic aerosols were either generated in situ by oxidation of VOC with ozone, OH radicals and NO<sub>3</sub> radicals or by nebulizing aqueous solutions containing the aerosol components.  The aerosols were analysed by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a high–resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-HR-ToF-CIMS).  The latter one offers the possibility to study the composition of gas phase and particle phase separately. First results suggest that secondary organic aerosols from single precursors like toluene or α-pinene show no or only very small changes related to photochemistry even when formed in presence of high NOx concentrations. In contrast, aerosol particles containing molecules with larger mesomeric systems or atmospherically relevant photosensitizers show significant changes upon irradiation.</p><p>In this presentation, we will discuss the changes that organic aerosols undergo in gas and particle phase, during photochemical aging at temperatures between 213 and 293 K.</p>

2021 ◽  
Author(s):  
Magdalena Vallon ◽  
Linyu Gao ◽  
Junwei Song ◽  
Feng Jiang ◽  
Harald Saathoff

<p>The chemical composition of aerosols, in both gas and particle phase, is an important factor regarding their properties influencing air quality, weather, climate, and human health. Organic compounds are a major fraction of atmospheric aerosols and their composition depends on chemical processing by atmospheric oxidants and photochemical reactions. These processes are complex due to the abundance of potential reactions and rarely studied over a wider range of atmospheric temperatures. To achieve a better understanding of three different photochemical processes relevant for the atmosphere as well as the capabilities to investigate such processes in our simulation chamber we studied three different organic aerosol systems between 213 K and 293 K in the AIDA simulation chamber at the Karlsruhe Institute of Technology.  With the first system we studied the direct photolysis of 2,3-pentanedion which is a typical carbonyl compound emitted by the food industry but also by trees. In the second system we studied the depletion of pinic and pinonic acid by radicals formed through photolysis of an iron oxalate complex, which acts as the photosensitizer in this system, all present in aqueous aerosol particles. Furthermore, we studied the photolysis of a nitrogen heterocycle in aerosol particles, which can form in the atmosphere by the reaction of dicarbonyls and shows strong absorption in the visible [1].</p><p>Photochemical reactions were studied using a new LED light-source simulating solar radiation in the UV and visible. The organic aerosols were generated by nebulizing aqueous solutions containing the aerosol components.  The aerosols were analysed by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a proton transfer mass spectrometer (CHARON-PTRMS) and a high–resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-HR-ToF-CIMS).  The latter two allow to study the composition of gas phase and particle phase separately.</p><p>In this presentation, we will discuss the changes that these organic compounds undergo in gas and particle phase, during photochemical aging at temperatures between 213 and 293 K.</p><p> </p><p>[1] C. J. Kampf, A. Filippi, C. Zuth, T. Hoffmann and T. Opatz, Secondary brown carbon formation via the dicarbonyl imine pathway: nitrogen heterocycle formation and synergistic effects, Phys. Chem. Chem. Phys, 2016, 18, 18353</p>


2020 ◽  
Author(s):  
Yunle Chen ◽  
Masayuki Takeuchi ◽  
Theodora Nah ◽  
Lu Xu ◽  
Manjula R. Canagaratna ◽  
...  

Abstract. The formation and evolution of secondary organic aerosol (SOA) was investigated at Yorkville, GA, in late summer (mid-August ~ mid-October, 2016). Organic aerosol (OA) composition was measured using two on-line mass spectrometry instruments, the high-resolution time-of-flight aerosol mass spectrometer (AMS) and the Filter Inlet for Gases and AEROsols coupled to a high-resolution time-of-flight iodide-adduct chemical ionization mass spectrometer (FIGAERO-CIMS). Through analysis of speciated organics data from FIGAERO-CIMS and factorization analysis of data obtained from both instruments, we observed notable SOA formation from isoprene and monoterpenes during both day and night. Specifically, in addition to isoprene epoxydiols (IEPOX) uptake, we identified isoprene SOA formation via hydroxyl hydroperoxide oxidation (ISOPOOH oxidation via non-IEPOX pathways) and isoprene organic nitrate formation via photooxidation in the presence of NOx and nitrate radical oxidation. Monoterpenes were found to be the most important SOA precursors at night. We observed significant contributions from highly-oxidized acid-like compounds to the aged OA factor from FIGAERO-CIMS. Taken together, our results showed that FIGAERO-CIMS measurements are highly complementary to the extensively used AMS factorization analysis, and together they provide more comprehensive insights into OA sources and composition.


2018 ◽  
Vol 18 (8) ◽  
pp. 5455-5466 ◽  
Author(s):  
Kei Sato ◽  
Yuji Fujitani ◽  
Satoshi Inomata ◽  
Yu Morino ◽  
Kiyoshi Tanabe ◽  
...  

Abstract. Traditional yield curve analysis shows that semi-volatile organic compounds are a major component of secondary organic aerosols (SOAs). We investigated the volatility distribution of SOAs from α-pinene ozonolysis using positive electrospray ionization mass analysis and dilution- and heat-induced evaporation measurements. Laboratory chamber experiments were conducted on α-pinene ozonolysis, in the presence and absence of OH scavengers. Among these, we identified not only semi-volatile products, but also less volatile highly oxygenated molecules (HOMs) and dimers. Ozonolysis products were further exposed to OH radicals to check the effects of photochemical aging. HOMs were also formed during OH-initiated photochemical aging. Most HOMs that formed from ozonolysis and photochemical aging had 10 or fewer carbons. SOA particle evaporation after instantaneous dilution was measured at  < 1 and  ∼ 40 % relative humidity. The volume fraction remaining of SOAs decreased with time and the equilibration timescale was determined to be 24–46 min for SOA evaporation. The experimental results of the equilibration timescale can be explained when the mass accommodation coefficient is assumed to be 0.1, suggesting that the existence of low-volatility materials in SOAs, kinetic inhibition, or some combined effect may affect the equilibration timescale measured in this study.


2019 ◽  
Vol 19 (18) ◽  
pp. 11687-11700 ◽  
Author(s):  
Wei Huang ◽  
Harald Saathoff ◽  
Xiaoli Shen ◽  
Ramakrishna Ramisetty ◽  
Thomas Leisner ◽  
...  

Abstract. The chemical composition and volatility of organic aerosol (OA) particles were investigated during July–August 2017 and February–March 2018 in the city of Stuttgart, one of the most polluted cities in Germany. Total non-refractory particle mass was measured with a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS; hereafter AMS). Aerosol particles were collected on filters and analyzed in the laboratory with a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-HR-ToF-CIMS; hereafter CIMS), yielding the molecular composition of oxygenated OA (OOA) compounds. While the average organic mass loadings are lower in the summer period (5.1±3.2 µg m−3) than in the winter period (8.4±5.6 µg m−3), we find relatively larger mass contributions of organics measured by AMS in summer (68.8±13.4 %) compared to winter (34.8±9.5 %). CIMS mass spectra show OOA compounds in summer have O : C of 0.82±0.02 and are more influenced by biogenic emissions, while OOA compounds in winter have O : C of 0.89±0.06 and are more influenced by biomass burning emissions. Volatility parametrization analysis shows that OOA in winter is less volatile with higher contributions of low-volatility organic compounds (LVOCs) and extremely low-volatility organic compounds (ELVOCs). We partially explain this by the higher contributions of compounds with shorter carbon chain lengths and a higher number of oxygen atoms, i.e., higher O : C in winter. Organic compounds desorbing from the particles deposited on the filter samples also exhibit a shift of signal to higher desorption temperatures (i.e., lower apparent volatility) in winter. This is consistent with the relatively higher O : C in winter but may also be related to higher particle viscosity due to the higher contributions of larger-molecular-weight LVOCs and ELVOCs, interactions between different species and/or particles (particle matrix), and/or thermal decomposition of larger molecules. The results suggest that whereas lower temperature in winter may lead to increased partitioning of semi-volatile organic compounds (SVOCs) into the particle phase, this does not result in a higher overall volatility of OOA in winter and that the difference in sources and/or chemistry between the seasons plays a more important role. Our study provides insights into the seasonal variation of the molecular composition and volatility of ambient OA particles and into their potential sources.


2016 ◽  
Author(s):  
Lei Yao ◽  
Ming-Yi Wang ◽  
Xin-Ke Wang ◽  
Yi-Jun Liu ◽  
Hang-Fei Chen ◽  
...  

Abstract. Amines and amides are important atmospheric organic-nitrogen compounds but high time resolution, highly sensitive, and simultaneous ambient measurements of these species are rather sparse. Here, we present the development of a high resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) method utilizing protonated ethanol as reagent ions to simultaneously detect atmospheric gaseous amines (C1 to C6) and amides (C1 to C6). This method possesses sensitivities of 5.6–19.4 Hz pptv−1 for amines and 3.8–38.0 Hz pptv−1 for amides under total reagent ion signals of ~ 0.32 MHz, and detection limits of 0.10–0.50 pptv for amines and 0.29–1.95 pptv for amides at 3σ of the background signal for a 1-min integration time, respectively. Controlled characterization in the laboratory indicates that relative humidity has significant influences on detection of amines and amides, whereas the presence of organics has no obvious effects. Ambient measurements of amines and amides utilizing this method were conducted from 25 July 2015 to 25 August 2015 in urban Shanghai, China. While the concentrations of amines ranged from a few pptv to hundreds of pptv, concentrations of amides varied from tens of pptv to a few ppbv. Among the C1- to C6-amines, the C2-amines were the dominant species with concentrations up to 130 pptv. For amides, the C3-amides (up to 8.7 ppb) were the most abundant species. The diurnal profiles of amines and amides suggest that in addition to the secondary formation of amides in the atmosphere, industrial emissions could be important sources of amides in urban Shanghai. During the campaign, photo-oxidation of amines and amides might be a main loss pathway for them in day time, and wet deposition was also an important sink.


2014 ◽  
Vol 48 (11) ◽  
pp. 6309-6317 ◽  
Author(s):  
Ben H. Lee ◽  
Felipe D. Lopez-Hilfiker ◽  
Claudia Mohr ◽  
Theo Kurtén ◽  
Douglas R. Worsnop ◽  
...  

2015 ◽  
Vol 8 (3) ◽  
pp. 3199-3244 ◽  
Author(s):  
P. Brophy ◽  
D. K. Farmer

Abstract. A novel configuration of the Aerodyne high resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) as a switchable reagent ion (SRI) HR-TOF-CIMS is presented and described along with data collected at the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013. The calibration system and reduced pressure gas-phase inlet are characterized. The average limit of detection and limit of quantification for formic acid during SOAS are 82 and 863 ppt, respectively, corresponding to an average sensitivity of 13 ± 5 Hz ppt−1. Hourly background determinations and calibrations are shown to be essential for tracking instrument performance and accurately quantifying formic acid. Maximum daytime formic acid concentrations of 10 ppb are reported during SOAS, and a strong diel cycle is observed leading to night time concentrations below the limit of quantification. Other species presented exhibit diel behavior similar to formic acid. The concept of the mass defect enhancement plot and the use of signal-to-noise are described in detail as a method for investigating HR-TOF-CIMS spectra in an effort to reduce data complexity.


Sign in / Sign up

Export Citation Format

Share Document