Spatiotemporal variability of soil penetration resistance in a field cultivated with sugarcane under conventional tillage system in northeast Brazil

Author(s):  
Brivaldo Gomes de Almeida ◽  
Ceres Duarte Guedes Cabral de Almeida ◽  
Thaís Fernandes de Assunção ◽  
Bruno Campos Mantovanelli ◽  
José Coelho de Araújo Filho ◽  
...  

<p>Soil management, although intended to create favorable structural conditions for crop growth and development, without prior assessment of potential and limitations, has been one of the reasons for the degradation of natural resources. The effects on soil degradation and respective structural quality are generally evaluated by some physical soil attributes such as bulk density (BD), total porosity (TP) and soil penetration resistance (PR). The PR is recognized as a physical parameter that supports the identification of areas with different stages of compaction and thus can be used to define appropriate management for soil remediation. Besides, this parameter depends on intrinsic soil factors (texture, structure, and mineralogy) and soil water content (SWC). Therefore, PR increases with BD and decreases with SWC (gravimetric or volumetric). Thus, it is possible to establish the critical limit of PR (PR<sub>CL</sub>) associated with the value of SWC that limits the growth of plant roots. PR<sub>CL</sub> varies according to soil type and plant species, but 2.0 MPa is the value scientifically accepted as the critical value to limit the root growth. Thus, the paper aimed to evaluate the spatial and temporal variability of PR in a field cultivated with sugarcane, under the conventional tillage system. The research was carried out in the Carpina Sugarcane Experimental Station, Pernambuco, Brazil. A grid of 70 x 70 m was delineated at intervals of 10 m and in each point soil samples were collected in the layers 0 - 0.30 m and 0.30 - 0.60 m depth. Three samplings were done to determine gravimetric soil water content; the first after six months of subsoiling (Time 6) before harrowing and planting, the second after 12 months of subsoiling (Time 12, six months after harrowing and planting) and the last after 18 months of subsoiling, before harvesting (Time 18). In each sampling time, in situ PR tests were carried out with the Solo Track equipment (Falker® - Model PLG 5300) and the simultaneous values of gravimetric soil water content were determined and associated with the PR data. The results showed that soil water content had a weak degree of spatial dependence, indicating the need to increase the number of samples. On the other hand, the PR values showed that the subsoiling did not promote a positive effect on the soil physical quality, with values above the PR<sub>CL</sub> for root development in Time 6 (2.42 MPa), even if after one year the sugarcane root system acted positively, by reducing PR in Time 18 (1.04 MPa) below the critical value.</p>

Soil Research ◽  
1988 ◽  
Vol 26 (2) ◽  
pp. 391 ◽  
Author(s):  
C Henderson ◽  
A Levett ◽  
D Lisle

Quantitative models to predict the effects of soil compaction on wheat yields are being developed for the northern sandplains of Western Australia. An understanding of the relationships between soil water content (W), bulk density (p), compactibility and soil penetration resistance (P) is required. Thirteen subsoils from W.A. sandplain soils were tested for compactibility. As the amounts of very coarse sand or clay in the soil increased, the maximum density (�max.) achieved with a standard compactive effort also increased, while the critical soil water content (Wcrit,.) for maximum compactibility declined. The effects of p and W on P were investigated for five of the soils. The value of P was only slightly affected as W was reduced to less than 70% of the field capacity water content. As the soils were dried further, P increased exponentially. At all water contents, an increase in p was found to markedly increase P. Particle size distribution could be used to predict �max. and Wcrit., but could not be related to the effects of changes in p and W on P. The implications for the measurement and effects of soil compaction in the field are discussed.


Geoderma ◽  
2011 ◽  
Vol 166 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Carlos M.P. Vaz ◽  
Juliana M. Manieri ◽  
Isabella C. de Maria ◽  
Markus Tuller

Revista CERES ◽  
2013 ◽  
Vol 60 (5) ◽  
pp. 715-721 ◽  
Author(s):  
Walter Francisco Molina Jr ◽  
Sônia Maria Stefano Piedade ◽  
Juarez Rennó Amaral

The soil penetration resistance has been used to represent the compaction situation and several authors have attempted to relate the cone index (CI) with the bulk density. The importance of using the CI as source of information for decisions in agricultural activities, livestock and forestry manner, has become increasingly larger, which requires more knowledge about the penetrometers and penetrographs behavior. This study aimed to verify, in controlled laboratory conditions, the influence of soil water content and cone penetration rate to obtain the cone index, when density variation occurs. The soil was compacted by compression through a universal press cylinder which was specially designed to produce the test specimens. Bulk densities were determined from samples taken from the test specimens and their moisture content. The CI values obtained were between 0.258 and 4.776 MPa, measured in 4 moistures and 7 soil densities with 3 penetration speeds. It was concluded that the determination of IC is strongly influenced by the soil moisture but the penetration speed variation, used in this study, was not sufficient to influence the IC determination. However, the decrease in soil water content may increase the sensitiveness to detect a variation in bulk density by the use of cone index.


2013 ◽  
Vol 33 (4) ◽  
pp. 748-757 ◽  
Author(s):  
Moacir T. de Moraes ◽  
Henrique Debiasi ◽  
Julio C. Franchini ◽  
Vanderlei R. da Silva

Soil compaction caused by machinery traffic reduces crop yields. This study aimed to evaluate the effects of intensive traffic, and the soil water content, on the soil penetration resistance (PR) of a Rhodic Eutrudox (Distroferric Red Latosol, Brazilian Classification), managed under no-tillage (NT). The experiment consisted of six treatments: NT with recent chiseling, NT without additional compaction, and NT with additional compaction by 4, 8, 10 and 20 passes of a harvester with a weight of 100 kN (70 kN on the front axle). Undisturbed soil samples were collected at 5.5-10.5 cm and 13.5-18.5 cm depth to quantify the soil bulk density (BD). The PR was assessed in four periods, using an impact penetrometer, inserted in the soil to a depth of 46 cm. The effect of traffic intensities on the PR was small when this variable was assessed with the soil in the plastic consistency. Differences in PR among treatments increased as the soil water content decreased. The increase in the values of PR and BD was higher in the first passes, but the increase in the number of traffics resulted in deeper soil compaction. The machinery traffic effects on PR are better characterized in the friable soil consistency.


2012 ◽  
Vol 36 (6) ◽  
pp. 1704-1713 ◽  
Author(s):  
Moacir Tuzzin de Moraes ◽  
Henrique Debiasi ◽  
Julio Cezar Franchini ◽  
Vanderlei Rodrigues da Silva

The soil penetration resistance is an important indicator of soil compaction and is strongly influenced by soil water content. The objective of this study was to develop mathematical models to normalize soil penetration resistance (SPR), using a reference value of gravimetric soil water content (U). For this purpose, SPR was determined with an impact penetrometer, in an experiment on a Dystroferric Red Latossol (Rhodic Eutrudox), at six levels of soil compaction, induced by mechanical chiseling and additional compaction by the traffic of a harvester (four, eight, 10, and 20 passes); in addition to a control treatment under no-tillage, without chiseling or additional compaction. To broaden the range of U values, SPR was evaluated in different periods. Undisturbed soil cores were sampled to quantify the soil bulk density (BD). Pedotransfer functions were generated correlating the values of U and BD to the SPR values. By these functions, the SPR was adequately corrected for all U and BD data ranges. The method requires only SPR and U as input variables in the models. However, different pedofunctions are needed according to the soil layer evaluated. After adjusting the pedotransfer functions, the differences in the soil compaction levels among the treatments, previously masked by variations of U, became detectable.


Soil Research ◽  
2013 ◽  
Vol 51 (6) ◽  
pp. 539 ◽  
Author(s):  
F. J. Cook ◽  
J. H. Knight ◽  
F. M. Kelliher

A set of equations governing oxygen diffusion and consumption in soils has been developed to include microbial and plant-root sinks. The dependent variable is the transformed oxygen concentration, which is the difference between the gaseous concentration and a scaled value of the aqueous oxygen concentration at the root–soil interface. The results show how, as the air-filled porosity decreases, the reduced oxygen flux causes the depth of extinction to decrease. The results also show how the depth of extinction at a particular value of soil water content decreases with increasing temperature, due to increased microbial respiration. The critical value of water content at which the oxygen concentration goes to extinction at a finite depth was compared with alternative calculations with only a microbial sink. By ignoring the feedback of oxygen concentration on root uptake, the alternative calculations yielded substantially higher critical values of water content at all temperatures. Two soil oxygen diffusion coefficient functions from the literature were compared and shown to give significantly different critical values of water content for fine-textured soils, one more realistic than the other. A single relationship between the extinction depth and the ratio of the water content to the critical value was shown to apply for all temperatures and soil textures. The oxygen profiles were used along with a function relating redox potential to oxygen concentration to generate redox potential profiles. This application of the model could be useful in explaining soil biochemical processes in soils. For one such process, denitrification, the depth at which a critical oxygen concentration is reached was calculated as a function of the air-filled porosity and temperature of the soil. The implications of the critical value of soil water content in terms of water-filled pore space and matric potential are discussed in relation to the diffusion coefficient functions and recent literature.


Soil Science ◽  
2012 ◽  
Vol 177 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Eva Vidal-Vázquez ◽  
Jorge Paz-Ferreiro ◽  
Sidney Vieira ◽  
George Topp ◽  
José Miranda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document