Soil Organic Carbon Distribution and Isotope Composition Response to Erosion in Cropland under Soybean/Maize Production

Author(s):  
Greg McCarty ◽  
Xia Li

<p>Soil erosion and deposition patterns can affect the fate of soil organic carbon (SOC) in agroecosystems. Topographic constraints affect soil redistribution processes and create spatial structure in SOC density. We combined isoscape (isotopic landscape) analyses for δ<sup>13</sup>C and cesium-137 (<sup>137</sup>Cs) inventory via digital terrain analysis quantifying SOC dynamics and soil redistribution patterns to gain insight on their responses to topographic constraints in an Iowa cropland field under soybean/maize (C3/C4) production. Additionally, historic bare soil orthophotos were used to determine soil carbon distribution before the 1960s (prior to global <sup>137</sup>CS fallout). Topography‐based models were developed to estimate <sup>137</sup>Cs inventory, SOC density, and δ<sup>13</sup>C distributions using stepwise principal component regression. Findings showed that spatial patterns of SOC were similar to soil erosion/deposition patterns with high SOC density in depositional areas and low SOC density in eroded areas. Soil redistribution, SOC density, and δ<sup>13</sup>C signature of SOC were all highly correlated with topographic metrics indicating that topographic constraints determined the spatial variability in erosion and SOC dynamics. The δ<sup>13</sup>C isoscape indicated that C3‐derived SOC density was strongly controlled by topographic metrics whereas C4‐derived SOC density showed much weaker expression of spatial pattern and poor correlation to topographic metrics. The resulting topography‐based models captured more than 60% of the variability in total SOC density and C3‐derived SOC density but could not reliably predict C4‐derived SOC density. This study demonstrated the utility of exploring relationships between δ<sup>13</sup>C and <sup>137</sup>Cs isoscapes to gain insight on fate of SOC within eroding agricultural landscapes.</p>

2020 ◽  
Author(s):  
Jessica Vasil’chuk ◽  
Leticia Gaspar ◽  
Ivan Lizaga ◽  
Ana Navas

<p>Soil erosion leads to the loss of fertile topsoil, resulting in one of the principal soil degradation problems in agricultural landscapes worldwide. Soil redistribution processes affect the spatial and temporal variability of soil properties and nutrients, as soil organic carbon (SOC) which is linked to soil quality and soil functions. In the context of climate change mitigation as well as soil fertility and food security, there has been considerable interest in monitoring soil and carbon loss, especially in erosion-affected agricultural landscapes.</p><p>In this study, we attempt to evaluate the temporal variation of SOC and carbon fractions in a Mediterranean mountain agroecosystem. To this purpose, repeating soil sampling and carbon measurements within the same sites was undertaken in 2003 and in 2016. The sampling sites were located in agricultural areas where erosion or deposition preferably occurs based on soil redistribution rates obtained by using <sup>137</sup>Cs measurements. The content of soil organic carbon (SOC) and the active and stable SOC fractions, (ACF and SCF, respectively) contents were measured by the dry combustion method using LECO RC-612 equipment.</p><p>Although statistically significant differences between the two surveys were not found, the mean content of SOC, ACF and SCF were slightly lower in the survey taken in 2016 than the one in 2013. Repeated topsoil sampling (0-5 cm) after 13 years reveals SOC and ACF losses for almost all the agricultural soils selected in this research. It’s important to highlight that the biggest differences between the two surveys are identified in the sites located in areas with steep slopes, while small variations occurred in the sites located in gentle slopes where deposition processes predominate. However, even if SCF losses were detected, especially in the erosive sites located in steep slopes, the content of SCF slightly increases for the second survey in sites located in depositional areas. To date, there have been few attempts to monitor soil carbon in Mediterranean soils, and this study represents a preliminary investigation that may be suitable for tracking absolute changes in SOC and carbon fractions in agricultural landscapes.</p>


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1438
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Spatial distribution of soil organic carbon (SOC) is the result of a combination of various factors related to both the natural environment and anthropogenic activities. The aim of this study was to examine (i) the state of SOC in topsoil and subsoil of vineyards compared to the nearest forest, (ii) the influence of soil management on SOC, (iii) the variation in SOC content with topographic position, (iv) the intensity of soil erosion in order to estimate the leaching of SOC from upper to lower topographic positions, and (v) the significance of SOC for the reduction of soil’s susceptibility to compaction. The study area was the vineyard region of Niš, which represents a medium-sized vineyard region in Serbia. About 32% of the total land area is affected, to some degree, by soil erosion. However, according to the mean annual soil loss rate, the total area is classified as having tolerable erosion risk. Land use was shown to be an important factor that controls SOC content. The vineyards contained less SOC than forest land. The SOC content was affected by topographic position. The interactive effect of topographic position and land use on SOC was significant. The SOC of forest land was significantly higher at the upper position than at the middle and lower positions. Spatial distribution of organic carbon in vineyards was not influenced by altitude, but occurred as a consequence of different soil management practices. The deep tillage at 60–80 cm, along with application of organic amendments, showed the potential to preserve SOC in the subsoil and prevent carbon loss from the surface layer. Penetrometric resistance values indicated optimum soil compaction in the surface layer of the soil, while low permeability was observed in deeper layers. Increases in SOC content reduce soil compaction and thus the risk of erosion and landslides. Knowledge of soil carbon distribution as a function of topographic position, land use and soil management is important for sustainable production and climate change mitigation.


CATENA ◽  
2017 ◽  
Vol 151 ◽  
pp. 63-73 ◽  
Author(s):  
Samuel Bouchoms ◽  
Zhengang Wang ◽  
Veerle Vanacker ◽  
Sebastian Doetterl ◽  
Kristof Van Oost

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Tong Li ◽  
Haicheng Zhang ◽  
Xiaoyuan Wang ◽  
Shulan Cheng ◽  
Huajun Fang ◽  
...  

2014 ◽  
Vol 11 (18) ◽  
pp. 5235-5244 ◽  
Author(s):  
A. Chappell ◽  
N. P. Webb ◽  
R. A. Viscarra Rossel ◽  
E. Bui

Abstract. The debate remains unresolved about soil erosion substantially offsetting fossil fuel emissions and acting as an important source or sink of CO2. There is little historical land use and management context to this debate, which is central to Australia's recent past of European settlement, agricultural expansion and agriculturally-induced soil erosion. We use "catchment" scale (∼25 km2) estimates of 137Cs-derived net (1950s–1990) soil redistribution of all processes (wind, water and tillage) to calculate the net soil organic carbon (SOC) redistribution across Australia. We approximate the selective removal of SOC at net eroding locations and SOC enrichment of transported sediment and net depositional locations. We map net (1950s–1990) SOC redistribution across Australia and estimate erosion by all processes to be ∼4 Tg SOC yr−1, which represents a loss of ∼2% of the total carbon stock (0–10 cm) of Australia. Assuming this net SOC loss is mineralised, the flux (∼15 Tg CO2-equivalents yr−1) represents an omitted 12% of CO2-equivalent emissions from all carbon pools in Australia. Although a small source of uncertainty in the Australian carbon budget, the mass flux interacts with energy and water fluxes, and its omission from land surface models likely creates more uncertainty than has been previously recognised.


Sign in / Sign up

Export Citation Format

Share Document