Copernicus for Urban Resilience in Europe: the CURE Project

Author(s):  
Nektarios Chrysoulakis ◽  
Zina Mitraka ◽  
Mattia Marconcini ◽  
David Ludlow ◽  
Zaheer Khan ◽  
...  

<p>Resilience has become an important necessity for cities, particularly in the face of climate change. Mitigation and adaptation actions that enhance the resilience of cities need to be based on a sound understanding and quantification of the drivers of urban transformation and settlement structures, human and urban vulnerability, and of local and global climate change. Copernicus, as the means for the establishment of a European capacity for Earth Observation (EO), is based on continuously evolving Core Services. A major challenge for the EO community is the innovative exploitation of the Copernicus products in dealing with urban sustainability towards increasing urban resilience. Due to the multidimensional nature of urban resilience, to meet this challenge, information from more than one Copernicus Core Services, namely the Land Monitoring Service (CLMS), the Atmosphere Monitoring Service (CAMS), the Climate Change Service (C3S) and the Emergency Management Service (EMS), is needed. Furthermore, to address urban resilience, the urban planning community needs spatially disaggregated environmental information at local (neighbourhood) scale. Such information, for all parameters needed, is not yet directly available from the Copernicus Core Services mentioned above, while several elements - data and products - from contemporary satellite missions consist valuable tools for retrieving urban environmental parameters at local scale. The H2020-Space project CURE (Copernicus for Urban Resilience in Europe) is a joint effort of 10 partners from 9 countries that synergistically exploits the above Copernicus Core Services to develop an umbrella cross-cutting application for urban resilience, consisting of individual cross-cutting applications for climate change adaptation/mitigation, energy and economy, as well as healthy cities and social environments, at several European cities. These cross-cutting applications cope with the required scale and granularity by also integrating or exploiting third-party data, in-situ observations and modelling. CURE uses DIAS (Data and Information Access Services) to develop a system capable of supporting operational applications and downstream services across Europe. The CURE system hosts the developed cross-cutting applications, enabling its incorporation into operational services in the future. CURE is expected to increase the value of Copernicus Core Services for future emerging applications in the domain of urban resilience, exploiting also the improved data quality, coverage and revisit times of the future satellite missions. Thus, CURE will lead to more efficient routine urban planning activities with obvious socioeconomic impact, as well as to more efficient resilience planning activities related to climate change mitigation and adaptation, resulting in improved thermal comfort and air quality, as well as in enhanced energy efficiency. Specific CURE outcomes could be integrated into the operational Copernicus service portfolio. The added value and benefit expected to emerge from CURE is related to transformed urban governance and quality of life, because it is expected to provide improved and integrated information to city administrators, hence effectively supporting strategies for resilience planning at local and city scales, towards the implementation of the Sustainable Development Goals and the New Urban Agenda for Europe.</p>

2021 ◽  
Vol 13 (11) ◽  
pp. 5999
Author(s):  
Giulia Lucertini ◽  
Gianmarco Di Giustino

Urban and peri-urban areas are subject to major societal challenges, like food security, climate change, biodiversity, resource efficiency, land management, social cohesion, and economic growth. In that context, Urban and Peri-urban Agriculture (UPA), thanks to its multifunctionality, could have a high value in providing social, economic, and environmental co-benefits. UPA is an emerging field of research and production that aims to improve food security and climate change impact reduction, improving urban resilience and sustainability. In this paper, a replicable GIS-based approach was used to localize and quantify available areas for agriculture, including both flat rooftop and ground-level areas in the mainland of the city of Venice (Italy). Then, possible horticultural yield production was estimated considering common UPA yield value and average Italian consumption. Climate change mitigation, like CO2 reduction and sequestration, and climate change adaptation, like Urban Flooding and Urban Heat Island reduction, due to the new UPA areas’ development were estimated. Despite the urban density, the identified areas have the potential to produce enough vegetables for the residents and improve climate change mitigation and adaptation, if transformed into agricultural areas. Finally, the paper concludes with a reflection on the co-benefits of UPA multifunctionality, and with some policy suggestions.


2022 ◽  
pp. 1-19
Author(s):  
Kiranmayi Raparthi

Climate change is a multidimensional observable fact and is regarded as one of the greatest challenges human society is facing in the 21st century. Urban researchers advocate that well formulated urban spatial planning policy has the ability to mitigate climate change and adapt to the adverse impacts of climate change. However, there has been limited research on analysing the extent to which spatial planning policies address climate change mitigation and adaptation. This chapter presents a qualitative evaluation of urban spatial planning polices in India by assessing planning policies against an evaluation framework. The analysis highlights that there are limited climate change mitigation and adaptation indicators in planning documents, and these indicators have been very limitedly integrated in the planning documents. This research supports the use of spatial planning policy as an effective tool in addressing climate change mitigation and has an implication for mainstreaming climate change mitigation and adaptation in urban planning.


Author(s):  
Goaitske Iepema ◽  
Nyncke J. Hoekstra ◽  
Ron de Goede ◽  
Jaap Bloem ◽  
Lijbert Brussaard ◽  
...  

2021 ◽  
Author(s):  
Paloma Marcos Morezuelas

As users of forest products and guardians of traditional knowledge, women have always been involved in forestry. Nevertheless, their access to forest resources and benefits and participation in forest management is limited compared to mens despite the fact that trees are more important to women, who depend on them for their families food security, income generation and cooking fuel. This guide aims to facilitate the incorporation of a gender lens in climate change mitigation and adaptation operations in forests, with special attention to those framed in REDD. This guide addresses four themes value chains, environmental payment schemes, firewood and biodiversity that relate directly to 1) how climate change impacts affect women in the forest and 2) how mitigation and adaptation measures affect womens access to resources and benefits distribution.


2019 ◽  
pp. 965-996 ◽  
Author(s):  
Oscar Serrano ◽  
Jeffrey J. Kelleway ◽  
Catherine Lovelock ◽  
Paul S. Lavery

Sign in / Sign up

Export Citation Format

Share Document