Storm Xaver over Europe in December 2013 and its energy meteorological impacts

Author(s):  
Anthony Kettle

<p>Storm Xaver impacted the northern Europe on 5-6 December 2013.  It developed southeast of Greenland and passed north of Scotland and across southern Norway on a trajectory that led to a cold air outbreak across the North Sea and intense convection activity in northern Europe.  Strong sustained north winds led to a high storm surge that impacted all countries bordering the North Sea.  Storm Xaver was a century scale event with certain locations around the North Sea reporting their highest ever water levels since the start of modern records.  Media reports from the time of the storm chronicle the scale of the disruptions, including many cancelled flights, interrupted rail networks, closed bridges and roads, coastal building collapses, and power blackouts across northern Europe.  Much of this was due to the strong winds, but coastal storm surge flooding was important in the UK, and it led to interrupted port operations around the North Sea.</p><p>The storm was important for energy infrastructure and particularly for wind energy infrastructure.  In the northern North Sea, petroleum platforms were evacuated and operations closed ahead of the storm as a precautionary measure.  A number of onshore wind turbines were badly damaged by high winds and lightning strikes in the UK and Germany.  Over the North Sea, wind speeds exceeded the turbine shutdown threshold of 25 m/s for an extended period of time, with economic impacts from the loss of power generation.   In the German Bight, the FINO1 offshore wind energy research platform was damaged at the 15 m level by large waves.  This was the third report of storm damage to this platform after Storm Britta in 2006 and Storm Tilo in 2007.  Researchers have highlighted the need to reassess  the design criteria for offshore wind turbines based on these kinds of extreme meteorological events.  For the offshore wind industry, an important element of energy meteorology is to characterize both the evolving wind and wave fields during severe storms as both elements contribute to turbine loads and potential damage.</p><p>The present conference contribution presents a literature review of the major events during Storm Xaver and impacts on energy infrastructure.  Tide gauge records are reanalyzed to trace the progress of the storm surge wave around the North Sea.  A spectral analysis is used to separate the long period storm surge component, diurnal/semidiurnal tide, and short period components in the original water level record.  The short period component of the tide gauge record is important as it may be linked with infragravity waves that have been implicated in certain cases of offshore infrastructure damage in addition to coastal erosion.  Discussion is made of offshore wave records during the storm.  Storm Xaver is compared with two damaging offshore storms in 2006 and 2007.</p>

2019 ◽  
Vol 49 ◽  
pp. 187-196 ◽  
Author(s):  
Anthony James Kettle

Abstract. Storm Tilo on 8–9 November 2007 ranks among the serious winter storms in northern Europe over the past 30 years. Its low pressure centre passed across the northern North Sea, and this led to a cold air outbreak in northwest Europe. Strong north winds across the North Sea contributed to a high storm surge that was serious for coastal regions in eastern England, the Netherlands and Germany. Storm winds and unusually high waves caused shipping accidents and damage to some offshore energy infrastructure. This report presents an outline of the met-ocean conditions and a short overview of storm impacts on societal and energy infrastructure. The progress of the storm surge around the North Sea is analysed using data from the national tide gauge networks. A spectral analysis of the water level data is used to isolate the long period storm surge and short period oscillations (i.e., <4.8 h) from the tidal signal. The calculated skew surge is compared with literature reports for this storm and also with another serious North Sea storm from 31 October–1 November 2006 (Storm Britta). The short period oscillations are compared with the platform and shipping incident reports for the 2 d storm period. The results support previous reports of unusual wave and water level dynamics during some severe regional winter storms.


2018 ◽  
Vol 45 ◽  
pp. 273-279 ◽  
Author(s):  
Anthony James Kettle

Abstract. Offshore energy infrastructure, including the petroleum and wind energy sectors, are susceptible to damage and interruption by extreme meteorological events. In northwest Europe and especially the North Sea, these extreme meteorological events are mostly associated with severe storms in the autumn and winter seasons. In the North Sea, storm surges have an impact on the offshore energy sector mainly from the flooding of port facilities and from strong ocean currents causing extra structural loading and bottom scouring. Storm Britta on 31 October–1 November 2006 was an important North Sea storm with a high surge along the coast of the Netherlands and Germany and a significant number of high wave reports. The paper presents an analysis of the national tide gauge records of the United Kingdom, the Netherlands, Germany, and Denmark to spectrally isolate and reconstruct time series components corresponding to the storm surge, semi-diurnal tide, and short period contribution. The semi-diurnal tides and storm surge during Storm Britta are tracked counter-clockwise around the North Sea from Scotland to northern Denmark. The storm surge was remarkable for its pronounced peak in the coastal area between the Netherlands and Germany with no precedent in the ∼100 year measurement record. The short period component of the tide gauge records show large oscillations during the height of the storm that may correspond with reports of unusually high waves at nearby coastal locations.


2021 ◽  
Author(s):  
Karen Simon ◽  
Riccardo Riva ◽  
Bert Vermeersen

&lt;p&gt;This study focusses on improved constraint of the millennial time-scale glacial isostatic adjustment (GIA) signal at present-day, and its role as a contributor to present-day sea-level budgets. The study area extends from the coastal regions of northern Europe to Scandinavia. Both Holocene relative sea level (RSL) data as well as vertical land motion (VLM) data are incorporated as constraints in a semi-empirical GIA model. Specifically, 71 geological rates of GIA-driven RSL change are inferred from Holocene proxy data. Rates of vertical land motion from GNSS at 108 sites provide an additional measure of regional GIA deformation; within the study area, the geological RSL data complement the spatial gaps of the VLM data and vice versa. Both datasets are inverted in a semi-empirical GIA model to yield updated estimates of regional present-day GIA deformations. A regional validation is presented for the North Sea, where the GIA signal may be complicated by lateral variations in Earth structure and existing predictions of regional and global GIA models show discrepancies. The model validation in the North Sea region suggests that geological data are needed to fit independent estimates of GIA-related RSL change inferred from tide gauge rates, indicating that geological rates from Holocene data can provide an important additional constraint for data-driven approaches to GIA estimation. The geological proxy rates therefore provide a unique dataset with which to complement or validate existing data-driven approaches that use satellite era rates of change.&lt;/p&gt;


2021 ◽  
Author(s):  
Molly lliffe

Abstract The UK was the first major industrialised nation to commit to a Net Zero target by 2050, and Scotland has an even more ambitious target to reach Net Zero by 2045. To realise these targets, hydrogen will play a leading role in the decarbonisation of multiple sectors including industry, transport, heat and power. Offshore wind can be a core component of our future energy infrastructure, and the scale of its potential role in hydrogen production has recently drawn wider attention from policy makers, developers and potential users across a range of sectors. Hydrogen as a route to market for offshore wind therefore presents a transformative opportunity for the North Sea oil and gas sector and the associated UK supply chain. Existing skills and infrastructure in this region can be leveraged to achieve a leading position in this emerging clean fuel source. This opportunity is particularly relevant for sites in the North Sea which are further from shore with good wind resource, where power transmission costs and/or losses would be prohibitive. Additionally, hydrogen offers an interesting route to market for projects unable to obtain firm grid connection, for sites in regions with high grid charges, or where sufficient government revenue support for conventional power generation is not available for all good quality sites.


2020 ◽  
Author(s):  
Karen Simon ◽  
Riccardo Riva

&lt;p&gt;In this study, we focus on better constraint of the long term glacial isostatic adjustment (GIA) signal at present-day, and its role as a contributor to total present-day rates of change. The main study area extends from the coastal regions of northern Europe to Scandinavia. Both Holocene relative sea level (RSL) data as well as vertical land motion (VLM) data are incorporated as constraints in a semi-empirical GIA model. Specifically, 70 geological rates of GIA-driven RSL change are inferred from Holocene data; peak RSL fall is indicated in central Scandinavia and the northern British Isles where past ice sheets were thickest, RSL rise is indicated in the southern British Isles and along the northern European coastline. Rates of vertical land motion from GPS at 108 sites provide an additional measure of regional GIA deformation. Within the study area, the geological RSL data complement the spatial gaps of the VLM data and vice versa; both datasets are inverted in a semi-empirical GIA model to yield updated estimates of regional present-day GIA deformations. A regional validation is presented for the North Sea, where the GIA signal may be complicated by lateral variations in Earth structure and existing predictions of regional and global GIA models are discrepant. The model validation in the North Sea region indicates that geological data are needed to fit independent estimates of GIA-related RSL change inferred from tide gauge rates, suggesting that the geological rates provide an important additional constraint of present-day GIA.&lt;/p&gt;


2021 ◽  
Vol 56 ◽  
pp. 141-153
Author(s):  
Anthony J. Kettle

Abstract. Storm Anatol impacted the North Sea and northern Europe on 3–4 December 1999. It brought hurricane force winds to Denmark and northern Germany, and high winds also in Sweden and countries around the Baltic Sea. For many meteorological stations in Denmark, the wind speeds were the highest on record and the storm was ranked as a century event. The storm impacts included extensive forest damage, fatalities, hundreds of injuries, power outages, transportation interruptions, as well as storm surge flooding on the west coast of Denmark. Strongly committed to wind energy, Denmark lost 13 onshore wind turbines destroyed during the storm. An important industry insurer noted that this was a remarkably low number, considering the storm intensity and the large number of turbines (>3500) installed in the country. In 1999, offshore wind energy was just getting started in Europe, and the storm provided an important test of environmental extreme conditions impacting offshore infrastructure. This contribution takes a closer look at the regional met-ocean conditions during the storm. A brief overview is made of the wind field and available wave measurements from the North Sea. An examination is made of water level measurements from around the North Sea to characterize the storm surge and identify possible meteo-tsunamis and infragravity waves. Offshore accidents are briefly discussed to assess if there had been unusual wave strikes on shipping or platforms. At the time of the storm in 1999, there was a growing awareness in the scientific community of possible changes in ambient sea state conditions and the increasing threat of rogue waves. The offshore wind energy community had become aware from the impact of rogue waves from damage at the research platform FINO1 in the southern North Sea during severe storms in 2006, 2007, 2009, and 2013. Storm Anatol may have been another rogue wave storm at an earlier stage of offshore wind energy development.


2020 ◽  
Vol 54 ◽  
pp. 137-147
Author(s):  
Anthony James Kettle

Abstract. Storm Xaver on 5–6 December 2013 was a serious winter storm in northern Europe with important impacts on societal and energy infrastructure. The storm's low pressure centre passed eastward north of Scotland, across the North Sea and southern Scandinavia, and into the Baltic region. The trajectory resulted in strong northwest winds and a cold air outbreak southward across the North Sea. The resultant convection system was associated with powerful wind gusts and freezing precipitation that impacted the UK, Belgium, the Netherlands, Germany, Poland, Denmark, Sweden, and Norway. The storm caused coastal flooding that was comparable with the most serious North Sea surge events of the 20th century. The primary impact for energy meteorology was a large scale electrical power loss in the northern part of the British Isles, Sweden, Poland, and parts of Germany. Petroleum production was reduced as offshore platforms were evacuated ahead of the storm. For wind energy, a number of onshore turbines were damaged by the gust field. Other societal impacts included travel and transport interruptions, building damage, forest damage, and coastal erosion. Because of the high water levels and sea state in the North Sea, the storm was important for offshore wind energy. The wind energy research tower FINO1 sustained unexpected damage during the storm, similar to previous wave strikes during Storm Britta (2006) and Storm Tilo (2007). A closer analysis is made of the tide gauge records across the North Sea to understand the progression of the storm surge and identify high amplitude, short-period features that may be linked to unusual seiches, meteotsunamis, or infragravity waves. Similar to previous storms, there is an indication that large infragravity waves during Storm Xaver may have had an impact on North Sea transport and energy infrastructure as well as coastal erosion. The review of information from different sources permits the met-ocean conditions and resultant societal/energy impacts to be related in time and space.


2021 ◽  
Author(s):  
Anthony Kettle

&lt;p&gt;Storm Anatol impacted the North Sea and northern Europe on 3-4 December 1999. It brought hurricane force winds to Denmark and northern Germany, and high winds also in Sweden and the Baltic states. &amp;#160;For many meteorological stations in Denmark, the wind speeds were the highest on record, and the storm was ranked as a century event. &amp;#160;The storm impacts included extensive forest damage, fatalities, hundreds of injuries, power outages, transportation interruptions, as well as storm surge flooding on the west coast of Denmark. &amp;#160;At the time of the storm, Denmark was strongly committed to wind energy, and approximately 10 onshore wind turbines were destroyed during the storm. &amp;#160;An important industry insurer noted that this was a remarkably low number considering the storm intensity and the large number of turbines (&gt;3500) installed in Denmark. &amp;#160;In 1999, offshore wind energy was just getting started in Europe. &amp;#160;Denmark had just started an environmental monitoring program at Horns Rev off the Danish North Sea coast in advance of an offshore wind farm that would be installed in 2002.&amp;#160; The offshore meteorological mast at Horns Rev survived the storm, but the wave field was significant, and it partially disabled the measurement system.&lt;br&gt;&amp;#160;&lt;br&gt;This contribution takes a closer look at the regional met-ocean conditions during the storm.&amp;#160; A brief overview is made of the wind field and available wave measurements from the North Sea. &amp;#160;A closer examination is made of water level meaurements from around the North Sea to characterize the storm surge and identify possible meteotsunamis and infragravity waves. &amp;#160;Offshore accidents are briefly discussed to assess if there had been unusual wave strikes on shipping or platforms.&amp;#160; At the time of the storm in 1999, there was a growing awareness in the scientific community of possible changes in sea state conditions in the North Atlantic area and the increasing threat of rogue waves.&amp;#160; The offshore wind energy research platform FINO1 near Borkum in the southern North Sea experienced large wave damage during Storm Britta on 1 November 2006.&amp;#160; There was a repetition of the wave damage during storms in 2007 and 2013.&amp;#160; Storm Anatol in 1999 was a major North Sea storm, and this contribution presents a survey to assess if there was unusual wave phenomena during the event.&amp;#160;&lt;/p&gt;


Author(s):  
O. B. Andersen ◽  
Y. Cheng ◽  
X. Deng ◽  
M. Steward ◽  
Z. Gharineiat

Abstract. The combination of the coarse temporal sampling by satellite altimeters in the deep ocean with the high temporal sampling at sparsely located tide gauges along the coast has been used to improve the forecast of high water for the North Sea along the Danish Coast and for the northeast coast of Australia. For both locations we have tried to investigate the possibilities and limitations of the use of satellite altimetry to capture high frequency signals (surges) using data from the past 20 years. The two regions are chosen to represent extra-tropical and tropical storm surge conditions. We have selected several representative high water events on the two continents based on tide gauge recordings and investigated the capability of satellite altimetry to capture these events in the sea surface height data. Due to the lack of recent surges in the North Sea we focused on general high water level and found that in the presence of two or more satellites we could capture more than 90% of the high water sea level events. In the Great Barrier Reef section of the northeast Australian coast, we have investigated several large tropical cyclones; one of these being Cyclone Larry, which hit the Queensland coast in March 2006 and caused both loss of lives as well as huge devastation. Here we demonstrate the importance of integrating tide gauges with satellite altimetry for forecasting high water at the city of Townsville in northeast Australia.


Sign in / Sign up

Export Citation Format

Share Document