Deriving the ancient lunar pole path from impact induced gravity anomalies

Author(s):  
David E Smith ◽  
Maria T Zuber ◽  
Sander J Goossens ◽  
Gregory A Neumann ◽  
Erwan Mazarico

<p>The large anomalies in the lunar gravity field are in most cases the result of large impacts that occurred more than 3 billion years ago.  Today those anomalies provide the stability of the lunar rotation and if removed would cause a change in the position of the intersection of the spin pole with the lithosphere. Thus, extracting a gravity anomaly from today’s gravity field can provide the approximate location of the pole of rotation prior to the impact that caused the anomaly.  By removing the gravity field of each anomaly in order of age, youngest first, we can estimate the path of the lunar pole back 3 to 4 billion years, to the beginning of the time of heavy bombardment.</p><p>Starting from the GRAIL gravity model we selectively remove large gravity anomalies by first determining the center and dimensions of the anomaly from the Bouguer gravity and then deriving the average free air gravity for the Bouguer location and dimensions. The anomaly field is expanded into spherical harmonics and the degree 2 terms used to derive the change in pole position caused by the anomaly. Removing each anomaly in order of increasing age provides an estimate of the pole path from before the time of the first anomaly, SP-A.  Since the pole path depends on the order of the gravity anomalies being created it is important to know when each impact induced anomaly occurred.  The results suggest the re-constructed motion of the lunar pole of rotation is within approximately 10 dgerees of the present pole.</p>

Science ◽  
2013 ◽  
Vol 340 (6140) ◽  
pp. 1552-1555 ◽  
Author(s):  
H. J. Melosh ◽  
Andrew M. Freed ◽  
Brandon C. Johnson ◽  
David M. Blair ◽  
Jeffrey C. Andrews-Hanna ◽  
...  

High-resolution gravity data from the Gravity Recovery and Interior Laboratory spacecraft have clarified the origin of lunar mass concentrations (mascons). Free-air gravity anomalies over lunar impact basins display bull’s-eye patterns consisting of a central positive (mascon) anomaly, a surrounding negative collar, and a positive outer annulus. We show that this pattern results from impact basin excavation and collapse followed by isostatic adjustment and cooling and contraction of a voluminous melt pool. We used a hydrocode to simulate the impact and a self-consistent finite-element model to simulate the subsequent viscoelastic relaxation and cooling. The primary parameters controlling the modeled gravity signatures of mascon basins are the impactor energy, the lunar thermal gradient at the time of impact, the crustal thickness, and the extent of volcanic fill.


Survey Review ◽  
2021 ◽  
pp. 1-11
Author(s):  
Kamto Paul Gautier ◽  
Yap Loudi ◽  
Zanga Amougou Alain ◽  
Kandé Houetchak Ludovic ◽  
Nguiya Sévérin ◽  
...  

2020 ◽  
Vol 46 (2) ◽  
pp. 48-54
Author(s):  
Patroba Achola Odera

This study carries out an evaluation of the recent high-degree combined global gravity-field models (EGM2008, EIGEN-6C4, GECO and SGG-UGM-1) over Kenya. The evaluation is conducted using observed geoid undulations (18 data points, mainly in Nairobi area) and free-air gravity anomalies (8,690 data points, covering the whole country). All the four models are applied at full spherical harmonic degree expansion. The standard deviations of the differences between observed and GGMs implied geoid undulations at 18 GPS/levelling points over Nairobi area are ±11.62, ±11.48, ±12.51 and ±11.75 cm for EGM2008, EIGEN-6C4, GECO and SGG-UGM-1, respectively. On the other hand, standard deviations of the differences between observed and GGMs implied free-air gravity anomalies at 8,690 data points over Kenya are ±10.11, ±10.03, ±10.19 and ±10.00 mGal for EGM2008, EIGEN-6C4, GECO and SGG-UGM-1, respectively. These results indicate that the recent high-degree global gravity-field models generally perform at the same level over Kenya. However, EIGEN6C4 performs slightly better than EGM2008, GECO and SGG-UGM-1, considering the independent check provided by GPS/levelling data (admittedly over a small area). These results further indicate a good prospect for the development of a precise gravimetric geoid model over Kenya using EIGEN-6C4 by integrating local terrestrial gravity data in a removecompute-restore scheme.


2012 ◽  
Vol 2 (2) ◽  
pp. 134-143 ◽  
Author(s):  
M. Šprlák ◽  
C. Gerlach ◽  
B. Pettersen

Validation of GOCE global gravity field models using terrestrial gravity data in NorwayThe GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite gravity gradiometry mission maps the Earth's gravity field. Harmonic analysis of GOCE observations provides a global gravity field model (GGFM). Three theoretical strategies, namely the direct, the space-wise and the time-wise approach, have been proposed for GOCE harmonic analysis. Based on these three methods, several GGFMs have been provided to the user community by ESA. Thereby different releases are derived from different periods of GOCE observations and some of the models are based on combinations with other sources of gravity field information. Due to the multitude of GOCE GGFMs, validation against independent data is a crucial task for the quality description of the different models.In this study, GOCE GGFMs from three releases are validated with respect to terrestrial free-air gravity anomalies in Norway. The spectral enhancement method is applied to avoid spectral inconsistency between the terrestrial and the GOCE free-air gravity anomalies.The results indicate that the time-wise approach is a reliable harmonic analysis procedure in all three releases of GOCE models. The space-wise approach, available in two releases, provides similar results as the time-wise approach. The direct approach seems to be highly affected by a-priori information.


2020 ◽  
Author(s):  
Gabriele Cambiotti ◽  
Karim Douch ◽  
Stefano Cesare ◽  
Alberto Anselmi ◽  
Nico Sneeuw ◽  
...  

<p>We perform Next Gerataion Gravity Mission (NGGM) simulations over a 12-year operational period by including in the background gravity field the time-dependent gravity anomalies caused by different earthquake scenarios and considering different sources of error on 28-day mean gravity field solutions: the instrumental errors of the interferometer and accelerometers, the time depenendent background model and the atmosphere-ocean dealiasing. In order to assess whether the observational errors mask or not the earthquake-induced gravity signals, we assume known the background gravity field and the spatial and temporal pattern of the earthquake-induced gravity anomalies. Then, for each earthquake, we estimate the amplitude of its gravity anomaly by inverting the NGGM synthetic data time series and we check its consistency with the expected amplitude, as well as with the null hypothesis. In order to investigate case studies representative of the main earthquake characteristics and their compliance with the NGGM specifications, we have considered normal, inverse and strike-slip focal mechanisms striking with different angles with respect to the polar orbit, reaching the Earth surface and in depth, occurring inland, off-shore and close to the coastlines and at the beginning (2-4 years), at the middle (5-7 years) and at the end (8-10 years) of the 12-year operational period. The fault dimensions and slip distribution vary with the seismic moment magnitude and are prescribed according to the circular fault model by Eshelby (1957). Furthermore, we also consider two different rheological stratifications with asthenospheric viscosity of 10¹⁸ and 10¹⁹ Pa s. In order to discuss whether the earthquake signal can be discriminated from other geophysical processes (like atmosphere, ocean, hydrology and glacial isostatic adjustment), we also perform the same inversion but, this time, its amplitude is estimated jointly with the time dependent background gravity field, which we simply model using static values, trends and periodical functions.</p>


Sign in / Sign up

Export Citation Format

Share Document