Hourly elemental concentrations in ambient aerosols in four cities in Asia and Europe – comparison and source apportionment

Author(s):  
Markus Furger ◽  
Pragati Rai ◽  
Jay G. Slowik ◽  
Sachchida N. Tripathi ◽  
Junji Cao ◽  
...  

<p>Megacities worldwide are suffering from elevated air pollution due, e.g., to continuously increasing urbanization, and a sizeable amount of the population in such areas is exposed to particulate matter (PM) concentrations exceeding the WHO limits. Huge efforts are therefore undertaken to characterize the air pollution situation and to reduce or mitigate the impact on the population and the environment. Modern instrumentation allows for a quantitative determination of aerosol concentration and composition with high time resolution (minutes to hours), and subsequent source apportionment.</p><p>We collected PM<sub>10</sub> and PM<sub>2.5</sub> aerosols alternatingly with an online X-ray fluorescence (XRF) spectrometer in the cities of New Delhi (India) in 2019, Beijing (China) in 2017, and Krakow (Poland) in 2018, with time resolutions from 30 to 120 min, and in London (UK) in 2012 with 3-stage rotating drum impactors and subsequent offline SR-XRF analysis. Campaigns lasted for two to seven weeks in fall and winter. Elements from Al to Bi were analyzed in near-real time, except for London.</p><p>Our results show that some of the cities experience episodic extreme events, whereas extremely high elemental concentrations are chronic in others. Toxic metals are shown to be strongly location-dependent, and may occur in extreme plumes. Meteorological conditions also play an important role and will be discussed. The regional influence of fine PM, in comparison to the more local origin of coarse PM will be evaluated. The differences among the four cities, with substantially higher concentrations in the Asian cities than the European ones will be discussed. Highly time-resolved size-segregated sampling allowed for a rough classification of elements into five groups and will be described in detail. We demonstrate that the use of size information on toxic elements, diurnal patterns of targeted emissions, and local vs. regional effects are advantageous for formulating effective environmental policies to protect public health.</p>

2015 ◽  
Vol 122 ◽  
pp. 521-530 ◽  
Author(s):  
Maxence Mendez ◽  
Nadège Blond ◽  
Patrice Blondeau ◽  
Coralie Schoemaecker ◽  
Didier A. Hauglustaine

2020 ◽  
Author(s):  
Pragati Rai ◽  
Jay G. Slowik ◽  
Markus Furger ◽  
Imad El Haddad ◽  
Suzanne Visser ◽  
...  

Abstract. We present highly time-resolved (30 to 120 min) measurements of size-fractionated (PM10 and PM2.5) elements in two cities in Asia (Delhi and Beijing) and Europe (Krakow and London). For most elements, the mean concentrations in PM10 and PM2.5 are higher in Asian cities (up to 24 and 28 times, respectively) than in Krakow, and often higher in Delhi than in Beijing. Among European cities, Krakow shows higher elemental concentrations (up to 20 and 27 times, respectively) than London. The enrichment factor of an element together with the size distribution allows for a rough classification of elements by major sources. We define five groups: (1) dust-related, (2) non-exhaust traffic emissions, (3) solid fuel combustion, (4) mixed traffic/industrial emissions, and (5) industrial/coal/waste burning emissions, with the last group exhibiting the most site-to-site variability. Hourly maximum concentrations of Pb and Zn reach up to 1 µg m−3 in Delhi, substantially higher than at the other sites. We demonstrate that the high time resolution and size-segregated elemental dataset can be a powerful tool to assess aerosol composition and sources in urban environments. Our results highlight the need to consider the size distributions of toxic elements, diurnal patterns of targeted emissions, and local vs. regional effects in formulating effective environmental policies to protect public health.


Author(s):  
Worku Tefera ◽  
Abera Kumie ◽  
Kiros Berhane ◽  
Frank Gilliland ◽  
Alexandra Lai ◽  
...  

The development of infrastructure, a rapidly increasing population, and urbanization has resulted in increasing air pollution levels in the African city of Addis Ababa. Prior investigations into air pollution have not yet sufficiently addressed the sources of atmospheric particulate matter. This study aims to identify the major sources of fine particulate matter (PM2.5) and its seasonal contribution in Addis Ababa, Ethiopia. Twenty-four-hour average PM2.5 mass samples were collected every 6th day, from November 2015 through November 2016. Chemical species were measured in samples and source apportionment was conducted using a chemical mass balance (CMB) receptor model that uses particle-phase organic tracer concentrations to estimate source contributions to PM2.5 organic carbon (OC) and the overall PM2.5 mass. Vehicular sources (28%), biomass burning (18.3%), plus soil dust (17.4%) comprise about two-thirds of the PM2.5 mass, followed by sulfate (6.5%). The sources of air pollution vary seasonally, particularly during the main wet season (June–September) and short rain season (February–April): From motor vehicles, (31.0 ± 2.6%) vs. (24.7 ± 1.2%); biomass burning, (21.5 ± 5%) vs. (14 ± 2%); and soil dust, (11 ± 6.4%) vs. (22.7 ± 8.4%), respectively, are amongst the three principal sources of ambient PM2.5 mass in the city. We suggest policy measures focusing on transportation, cleaner fuel or energy, waste management, and increasing awareness on the impact of air pollution on the public’s health.


2020 ◽  
Author(s):  
Guo Li ◽  
Hang Su ◽  
Nan Ma ◽  
Guangjie Zheng ◽  
Uwe Kuhn ◽  
...  

<p>Direct measurement of the acidity (pH) of ambient aerosol particles/droplets has long been a challenge for atmospheric scientists.  A novel and facile method was introduced recently by Craig et al. (2018), where the pH of size-resolved aerosol droplets was directly measured by two types of pH-indicator papers (pH ranges: 0 – 2.5 and 2.5 – 4.5) combined with RGB-based colorimetric analyses using a model of G-B (G minus B) versus pH<sup>2</sup>.  Given the wide pH range of ambient aerosols, we optimize the RGB-based colorimetric analysis on pH papers with a wider detection range (pH ~ 0 to 6).  Here, we propose a new model to establish the linear relationship between RGB values and pH: pH<sub>predict</sub> = a×R<sub>normal</sub> + b×G<sub>normal</sub> + c×B<sub>normal</sub>.  This model shows a wider applicability and higher accuracy than those in previous studies, and is thus recommended in future RGB-based colorimetric analyses on pH papers.  Moreover, we identify one type of pH paper (Hydrion<sup>®</sup> Brilliant pH dip stiks, Lot Nr. 3110, Sigma-Aldrich) that is more applicable for ambient aerosols in terms of its wide pH detection range (0 to 6) and strong anti-interference capacity.  The determined minimum sample mass (~ 180 µg) highlights its potential to predict aerosol pH with a high time resolution (e.g., ≤ 1 hour).  We further show that the routinely adopted way of using pH color charts to predict aerosol pH may be biased by the mismatch between the standard colors on the color charts and the real colors of investigated samples.  Thus, instead of using the producer-provided color chart, we suggest an in-situ calibration of pH papers with standard pH buffers.</p><p>Reference:</p><p>Craig, et al., Direct determination of aerosol pH: Size-resolved measurements of submicrometer and supermicrometer aqueous particles. Analytical Chemistry, 90 (19), 11232-11239, 2018.</p><p>Cheng, et al., Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances, 2 (12), e1601530, 10.1126/sciadv.1601530, 2016.</p><p>Zheng, et al., Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmospheric Chemistry and Physics, 15, 2969-2983, 2015.</p><p>Li, et al., Multifactor colorimetric analysis on pH-indicator papers: an optimized approach for direct determination of ambient aerosol pH, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-394, in review, 2019.</p>


2019 ◽  
Vol 19 (11) ◽  
pp. 7719-7742 ◽  
Author(s):  
Brigitte Rooney ◽  
Ran Zhao ◽  
Yuan Wang ◽  
Kelvin H. Bates ◽  
Ajay Pillarisetti ◽  
...  

Abstract. Approximately 3 billion people worldwide cook with solid fuels, such as wood, charcoal, and agricultural residues. These fuels, also used for residential heating, are often combusted in inefficient devices, producing carbonaceous emissions. Between 2.6 and 3.8 million premature deaths occur as a result of exposure to fine particulate matter from the resulting household air pollution (Health Effects Institute, 2018a; World Health Organization, 2018). Household air pollution also contributes to ambient air pollution; the magnitude of this contribution is uncertain. Here, we simulate the distribution of the two major health-damaging outdoor air pollutants (PM2.5 and O3) using state-of-the-science emissions databases and atmospheric chemical transport models to estimate the impact of household combustion on ambient air quality in India. The present study focuses on New Delhi and the SOMAARTH Demographic, Development, and Environmental Surveillance Site (DDESS) in the Palwal District of Haryana, located about 80 km south of New Delhi. The DDESS covers an approximate population of 200 000 within 52 villages. The emissions inventory used in the present study was prepared based on a national inventory in India (Sharma et al., 2015, 2016), an updated residential sector inventory prepared at the University of Illinois, updated cookstove emissions factors from Fleming et al. (2018b), and PM2.5 speciation from cooking fires from Jayarathne et al. (2018). Simulation of regional air quality was carried out using the US Environmental Protection Agency Community Multiscale Air Quality modeling system (CMAQ) in conjunction with the Weather Research and Forecasting modeling system (WRF) to simulate the meteorological inputs for CMAQ, and the global chemical transport model GEOS-Chem to generate concentrations on the boundary of the computational domain. Comparisons between observed and simulated O3 and PM2.5 levels are carried out to assess overall airborne levels and to estimate the contribution of household cooking emissions. Observed and predicted ozone levels over New Delhi during September 2015, December 2015, and September 2016 routinely exceeded the 8 h Indian standard of 100 µg m−3, and, on occasion, exceeded 180 µg m−3. PM2.5 levels are predicted over the SOMAARTH headquarters (September 2015 and September 2016), Bajada Pahari (a village in the surveillance site; September 2015, December 2015, and September 2016), and New Delhi (September 2015, December 2015, and September 2016). The predicted fractional impact of residential emissions on anthropogenic PM2.5 levels varies from about 0.27 in SOMAARTH HQ and Bajada Pahari to about 0.10 in New Delhi. The predicted secondary organic portion of PM2.5 produced by household emissions ranges from 16 % to 80 %. Predicted levels of secondary organic PM2.5 during the periods studied at the four locations averaged about 30 µg m−3, representing approximately 30 % and 20 % of total PM2.5 levels in the rural and urban stations, respectively.


Author(s):  
Jolanda Palmisani ◽  
Alessia Di Gilio ◽  
Silvana Angela Franchini ◽  
Pietro Cotugno ◽  
Daniela Valeria Miniero ◽  
...  

The present study was aimed at determining airborne concentrations of PAHs, Nitro-/Oxy-PAHs and elements in industrial and urban areas of Taranto, a site of environmental risk in Southern Italy, after the issue of strategic measures for air pollution mitigation and control by the Italian Environment Ministry in 2012. A PM2.5 sampling campaign was carried out from 9 to 28 December 2014 at eight receptor sites, two placed in the urban settlement and five included in the high spatial resolution fence monitoring network of the biggest European steel plant. The integration of collected data with meteorological parameters and source apportionment analysis by Positive Matrix Factorization and bivariate polar plots allowed to discriminate among emission sources and estimate their contributions. Evidence on the effect of distinct processes (homogenization, sintering) occurring inside the steel plant on airborne concentrations of PAHs and selected elements was provided. The impact of emissions from the steel plant “core” on the surrounding area was observed at receptor sites downwind to it. Moreover, the extent of the effectiveness of mitigation measures, partially applied at the moment of study’s beginning, was demonstrated by mean and peak pollutant concentrations at all receptor sites up to one order of magnitude lower than those documented prior to 2012.


2017 ◽  
Author(s):  
Laura-Hélèna Rivellini ◽  
Isabelle Chiapello ◽  
Emmanuel Tison ◽  
Marc Fourmentin ◽  
Anaïs Féron ◽  
...  

Abstract. The present study offers the first chemical characterization of the submicron (PM1) fraction in West Africa at a high time resolution, thanks to collocated measurements of non-refractory (NR) species with an Aerosol Chemical Speciation Monitor (ACSM), black carbon and iron concentrations derived from absorption coefficient measurements with a 7-wavelength aethalometer, and total PM1 determined by a TEOM-FDMS for mass closure. The field campaign was carried out during four months (March to June 2015) as part of the SHADOW (SaHAran Dust Over West Africa) project at a coastal site located in the outskirts of the city of M'Bour, Senegal. With an average mass concentration of 5.4 µg m−3, levels of NR-PM1 in M'Bour were three to ten times lower than cities like Paris or Beijing. Nonetheless the first half of the observation period was marked by intense but short pollution events (concentrations higher than 15 µg m−3), sea breeze phenomena and Saharan desert dust outbreaks (PM10 up to 900 µg m−3). During the second half of the campaign, the sampling site was mainly under the influence of marine air masses. The air masses on days under continental and sea breeze influences were dominated by organics (36–40 %), whereas sulfate particles were predominant (40 %) for days under oceanic influence. Overall, measurements showed that about 3/4 of the total PM1 were explained by NR-PM1, BC and Fe (a proxy for dust) concentrations, leaving ~ 1/4 for other refractory species. A mean value of 4.6 % for the Fe / PM1 ratio was obtained. Source apportionment of the organic fraction, using Positive Matrix Factorization (PMF) highlighted the impact of local combustion sources, such as traffic and residential activities, which contribute on average to 52 % of the total organic fraction. A new organic aerosol (OA) source, representing on average 3 % of the total OA fraction, showed similar variation as non-refractory particulate chloride. Its rose plot and daily pattern pointed out to local combustion processes, that is to say two open waste burning areas located about 6 and 11 km away from the receptor site and to a lesser extent a traditional fish smoking place. The remaining fraction was identified as oxygenated organic aerosols (OOA), a factor that prevailed regardless of the day type (45 %) and was representative of regional but also local sources due to enhanced photochemical processes.


2017 ◽  
Vol 17 (17) ◽  
pp. 10291-10314 ◽  
Author(s):  
Laura-Hélèna Rivellini ◽  
Isabelle Chiapello ◽  
Emmanuel Tison ◽  
Marc Fourmentin ◽  
Anaïs Féron ◽  
...  

Abstract. The present study offers the first chemical characterization of the submicron (PM1) fraction in western Africa at a high time resolution, thanks to collocated measurements of nonrefractory (NR) species with an Aerosol Chemical Speciation Monitor (ACSM), black carbon and iron concentrations derived from absorption coefficient measurements with a 7-wavelength Aethalometer, and total PM1 determined by a TEOM-FDMS (tapered element oscillating microbalance–filtered dynamic measurement system) for mass closure. The field campaign was carried out over 3 months (March to June 2015) as part of the SHADOW (SaHAran Dust Over West Africa) project at a coastal site located in the outskirts of the city of Mbour, Senegal. With an averaged mass concentration of 5.4 µg m−3, levels of NR PM1 in Mbour were 3 to 10 times lower than those generally measured in urban and suburban polluted environments. Nonetheless the first half of the observation period was marked by intense but short pollution events (NR PM1 concentrations higher than 15 µg m−3), sea breeze phenomena and Saharan desert dust outbreaks (PM10 up to 900 µg m−3). During the second half of the campaign, the sampling site was mainly under the influence of marine air masses. The air masses on days under continental and sea breeze influences were dominated by organics (36–40 %), whereas sulfate particles were predominant (40 %) for days under oceanic influence. Overall, measurements showed that about three-quarters of the total PM1 were explained by NR PM1, BC (black carbon) and Fe (a proxy for dust) concentrations, leaving approximately one-quarter for other refractory species. A mean value of 4.6 % for the Fe ∕ PM1 ratio was obtained. Source apportionment of the organic fraction, using positive matrix factorization (PMF), highlighted the impact of local combustion sources, such as traffic and residential activities, which contribute on average to 52 % of the total organic fraction. A new organic aerosol (OA) source, representing on average 3 % of the total OA fraction, showed similar variation to nonrefractory particulate chloride. Its rose plot and daily pattern pointed to local combustion processes, i.e., two open waste-burning areas located about 6 and 11 km away from the receptor site and to a lesser extent a traditional fish-smoking location. The remaining fraction was identified as oxygenated organic aerosols (OOA), a factor that prevailed regardless of the day type (45 %) and was representative of regional (approximately three-quarters) but also local (approximately one-quarter) sources due to enhanced photochemical processes.


2018 ◽  
Author(s):  
Brigitte Rooney ◽  
Ran Zhao ◽  
Kelvin H. Bates ◽  
Ajay Pillarisetti ◽  
Sumit Sharma ◽  
...  

Abstract. Approximately 3 billion people worldwide cook with solid fuels, such as wood, charcoal, and agricultural residues. These fuels are often combusted in inefficient cookstoves, producing carbonaceous emissions. Between 2.6 and 3.8 million premature deaths occur as a result to exposure to fine particulate matter from the resulting household air pollution (Health Effects Institute, 2018a; World Health Organization, 2018). Household air pollution also contributes to ambient air pollution; the magnitude of this contribution is uncertain. Here, we simulate the distribution of the two major health-damaging outdoor air pollution species (PM2.5 and O3) using state-of-the-science emissions databases and atmospheric chemical transport models to estimate the impact of household combustion on ambient air quality in India. The present study focuses on New Delhi and the SOMAARTH Demographic, Development, and Environmental Surveillance Site (DDESS) in the Palwal District of Haryana, located about 80 km south of New Delhi. The DDESS covers an approximate population of 200 000 within 52 villages. The emissions inventory used in the present study was prepared based on a national inventory in India (Sharma et al., 2015, 2016), an updated residential sector inventory prepared at the University of Illinois, updated cookstove emissions factors from Fleming et al. (2018b), and PM2.5 speciation from cooking fires from Jayarathne et al. (2018). Simulation of regional air quality was carried out using the U.S. Environmental Protection Agency Community Multiscale Air Quality modeling system (CMAQ), in conjunction with the Weather Research and Forecasting modeling system (WRF) to simulate the meteorological inputs for CMAQ, and the global chemical transport model GEOS-Chem to generate concentrations on the boundary of the computational domain. Comparisons between observed and simulated O3 and PM2.5 levels are carried out to assess overall airborne levels and to estimate the contribution of household cooking emissions. Observed and predicted ozone levels over New Delhi during September 2015, December 2015, and September 2016 routinely exceeded 150 μg m−3, as compared with the 8-hour Indian standard of 100 μg m−3, and, on occasion, exceeded 200 μg m−3. PM2.5 levels are predicted over the SOMAARTH headquarters (September 2015 and September 2016), Bajada Pahari (a village in the surveillance site, September 2015, December 2015, and September 2016), and New Delhi (September 2015, December 2015, and September 2016). Predicted levels vary depending on the time of year but, on the whole, tend to be somewhat less than those observed. The predicted fractional impact of residential emissions on PM2.5 levels varies from about 0.30 in SOMAARTH HQ and Bajada Pahari to about 0.10 in New Delhi. Predicted levels of secondary organic PM2.5 during the periods studied at the three locations averaged about 5 μg m−3, representing approximately 10 % of total PM2.5 levels, accentuating the dominant role played by primary carbonaceous emissions in all three locations.


2021 ◽  
Vol 21 (2) ◽  
pp. 717-730
Author(s):  
Pragati Rai ◽  
Jay G. Slowik ◽  
Markus Furger ◽  
Imad El Haddad ◽  
Suzanne Visser ◽  
...  

Abstract. We present highly time-resolved (30 to 120 min) measurements of size-fractionated (PM10 and PM2.5) elements in two cities in Asia (Delhi and Beijing) and Europe (Krakow and London). For most elements, the mean concentrations in PM10 and PM2.5 are higher in the Asian cities (up to 24 and 28 times, respectively) than in Krakow and often higher in Delhi than in Beijing. Among European cities, Krakow shows higher elemental concentrations (up to 20 and 27 times, respectively) than London. Hourly maximum concentrations of Pb and Zn reach up to 1 µg m−3 in Delhi, substantially higher than at the other sites. The enrichment factor of an element together with the size distribution allows for a rough classification of elements by major source. We define five groups: (1) dust emissions, (2) non-exhaust traffic emissions, (3) solid fuel combustion, (4) mixed traffic/industrial emissions, and (5) industrial/coal/waste burning emissions, with the last group exhibiting the most site-to-site variability. We demonstrate that the high time resolution and size-segregated elemental dataset can be a powerful tool to assess aerosol composition and sources in urban environments. Our results highlight the need to consider the size distributions of toxic elements, diurnal patterns of targeted emissions, and local vs. regional effects in formulating effective environmental policies to protect public health.


Sign in / Sign up

Export Citation Format

Share Document