The Single-column Urban Boundary Layer Intercomparison Modelling Experiment (SUBLIME): results of revised recipe

Author(s):  
Gert-Jan Steeneveld ◽  
Aristofanis Tsiringakis ◽  

<p>Models for weather and climate have been actively populated with urban canopy models in the last decade. Urban canopy models are available with different levels of complexity. In an earlier study several urban canopy models have been evaluated in offline mode (Grimmond et al. 2011). However, in reality these schemes operate within a numerical weather prediction model, and are coupled with the atmospheric boundary layer. Within the SUBLIME model intercomparison study, single-column models equipped with urban canopy models are evaluated against observations for a clear sky case over London. As such we aim to unravel whether model sensitivity for urban morphological parameters is similar in coupled and uncoupled model. Moreover, the SUBLIME project provides a benchmark for future model evaluation and further development. The SUBLIME experiment consists of a forecast task over a 54 hour period (23-25 July 2012), during which clear sky conditions persisted over London. It consists of two main stages, firstly an offline urban canopy model run, to determine how the surface scheme performs. This is followed by a run in which the urban canopy model is coupled to a single-column model to simulate the coupling to the urban boundary layer. Model forcing data were provided by flux tower, LIDAR and radiosonde observations. Additional external forcings for geostrophic wind speed and advection of heat, moisture and momentum which could not be directly observed were simulated using, 3-D WRF (Weather Research and Forecasting model) model runs. This presentation will discuss the modelling results using the new revised external forcings. We evaluate model outcomes against surface radiation and energy balance observations for both stages. For the second stage, modelled vertical profiles of wind, temperature and humidity as well as boundary-layer height are compared against observations and between models. Finally, differences in model results are identified and the physical processes responsible for these are explored using process diagrams.</p>

2017 ◽  
Vol 56 (8) ◽  
pp. 2173-2187 ◽  
Author(s):  
James Brownlee ◽  
Pallav Ray ◽  
Mukul Tewari ◽  
Haochen Tan

AbstractNumerical simulations without hydrological processes tend to overestimate the near-surface temperatures over urban areas. This is presumably due to underestimation of surface latent heat flux. To test this hypothesis, the existing single-layer urban canopy model (SLUCM) within the Weather Research and Forecasting Model is evaluated over Houston, Texas. Three simulations were conducted during 24–26 August 2000. The simulations include the use of the default “BULK” urban scheme, the SLUCM without hydrological processes, and the SLUCM with hydrological processes. The results show that the BULK scheme was least accurate, and it overestimated the near-surface temperatures and winds over the urban regions. In the presence of urban hydrological processes, the SLUCM underestimates these parameters. An analysis of the surface heat fluxes suggests that the error in the BULK scheme is due to a lack of moisture at the urban surface, whereas the error in the SLUCM with hydrological processes is due to increases in moisture at the urban surface. These results confirm earlier studies in which changes in near-surface temperature were primarily due to the changes in the turbulent (latent and sensible heat) fluxes in the presence of hydrological processes. The contribution from radiative flux was about one-third of that from turbulent flux. In the absence of hydrological processes, however, the results indicate that the changes in radiative flux contribute more to the near-surface temperature changes than the turbulent heat flux. The implications of these results are discussed.


2016 ◽  
Author(s):  
M. García-Díez ◽  
D. Lauwaet ◽  
H. Hooyberghs ◽  
J. Ballester ◽  
K. De Ridder ◽  
...  

Abstract. As most of the population lives in urban environments, the simulation of the urban climate has become a key problem in the framework of the climate change impact assessment. However, the high computational power required by these simulations is a severe limitation. Here we present a study on the performance of a Urban Climate Model (UrbClim), designed to be several orders of magnitude faster than a full-fledge mesoscale model. The simulations are validated with station data and with land surface temperature observations retrieved by satellites. To explore the advantages of using a simple model like UrbClim, the results are compared with a simulation carried out with a state-of-the-art mesoscale model, the Weather Research and Forecasting model, using an Urban Canopy model. The effect of using different driving data is explored too, by using both relatively low resolution reanalysis data (70 km) and a higher resolution forecast model (15 km). The results show that, generally, the performance of the simple model is comparable to or better than the mesoscale model. The exception are the winds and the day-to-day correlation in the reanalysis driven run, but these problems disappear when taking the boundary conditions from the higher resolution forecast model.


2018 ◽  
Vol 131 (5) ◽  
pp. 1235-1248 ◽  
Author(s):  
Meng Huang ◽  
Zhiqiu Gao ◽  
Shiguang Miao ◽  
Fei Chen

Sign in / Sign up

Export Citation Format

Share Document