Towards an improved understanding of high-resolution impurity signals in deep Antarctic ice cores

Author(s):  
Pascal Bohleber ◽  
Marco Roman ◽  
Carlo Barbante ◽  
Barbara Stenni ◽  
Barbara Delmonte

<p>Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers minimally destructive ice core impurity analysis at micron-scale resolution. This technique is especially suited for exploring closely spaced layers of ice within samples collected at low accumulation sites or in regions of highly compressed and thinned ice. Accordingly, LA-ICP-MS promises invaluable insights in the analysis of a future “Oldest ice core” from Antarctica. However, in contrast to ice core melting techniques, taking into account the location of impurities is crucial to avoid misinterpretation of ultra-fine resolution signals obtained from newly emerging laser ablation technologies. Here we present first results from a new LA-ICP-MS setup developed at the University of Venice, based on a customized two-volume cryogenic ablation chamber optimized for fast wash-out times. We apply our method for high-resolution chemical imagining analysis of impurities in samples from intermediate and deep sections of the Talos Dome and EPICA Dome C ice cores. We discuss the localization of both soluble and insoluble impurities within the ice matrix and evaluate the spatial significance of a single profile along the main core axis. With this, we aim at establishing a firm basis for a future deployment of the LA-ICP-MS in an “Oldest Ice Core”. Moreover, our work illustrates how LA-ICP-MS may offer new means to study the impurity-microstructure interplay in deep polar ice, thereby promising to advance our understanding of these fundamental processes.</p>

2021 ◽  
Vol 15 (7) ◽  
pp. 3523-3538
Author(s):  
Pascal Bohleber ◽  
Marco Roman ◽  
Martin Šala ◽  
Barbara Delmonte ◽  
Barbara Stenni ◽  
...  

Abstract. Due to its micrometer-scale resolution and inherently micro-destructive nature, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is particularly suited to exploring the thin and closely spaced layers in the oldest sections of polar ice cores. Recent adaptions to the LA-ICP-MS instrumentation mean we have faster washout times allowing state-of-the-art 2-D imaging of an ice core. This new method has great potential especially when applied to the localization of impurities on the ice sample, something that is crucial, to avoiding misinterpretation of the ultra-fine-resolution signals. Here we present the first results of the application of LA-ICP-MS elemental imaging to the analysis of selected glacial and interglacial samples from the Talos Dome and EPICA Dome C ice cores from central Antarctica. The localization of impurities from both marine and terrestrial sources is discussed, with special emphasis on observing a connection with the network of grain boundaries and differences between different climatic periods. Scale-dependent image analysis shows that the spatial significance of a single line profile along the main core axis increases systematically as the imprint of the grain boundaries weakens. It is demonstrated how instrumental settings can be adapted to suit the purpose of the analysis, i.e., by either employing LA-ICP-MS to study the interplay between impurities and the ice microstructure or to investigate the extremely thin climate proxy signals in deep polar ice.


2020 ◽  
Author(s):  
Pascal Bohleber ◽  
Marco Roman ◽  
Martin Šala ◽  
Barbara Delmonte ◽  
Barbara Stenni ◽  
...  

Abstract. Due to its micron-scale resolution and micro-destructiveness, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is especially suited for exploring closely spaced layers in the oldest and highly thinned sections of polar ice cores. Recent adaptions of the LA-ICP-MS technique have achieved fast washout times as the basis for introducing state-of-the-art 2D imaging to ice core analysis. This new method has great potential in its application for investigating the localization of impurities on the ice sample, crucial to avoid misinterpretation of ultra-fine resolution signals. Here first results are presented from applying LA-ICP-MS elemental imaging to selected glacial and interglacial samples of the Talos Dome and EPICA Dome C ice cores from central Antarctica. The localization of impurities with both marine and terrestrial sources is discussed, revealing generally a strong connection with the network of grain boundaries but also distinct differences among climatic periods. Scale-dependent image analysis shows that the spatial significance of a single line profile along the main core axis increases systematically as the imprint of grain boundaries weakens. With this, it is demonstrated how instrumental settings can be adapted specifically fit-for-purpose, i.e. either to employ LA-ICP-MS to study the impurity-microstructure interplay or to investigate highly thinned climate proxy signals in deep polar ice.


2015 ◽  
Vol 403 ◽  
pp. 42-51 ◽  
Author(s):  
Rick Hennekam ◽  
Tom Jilbert ◽  
Paul R.D. Mason ◽  
Gert J. de Lange ◽  
Gert-Jan Reichart

2015 ◽  
Vol 61 (226) ◽  
pp. 233-242 ◽  
Author(s):  
Sharon B. Sneed ◽  
Paul A. Mayewski ◽  
W.G. Sayre ◽  
Michael J. Handley ◽  
Andrei V. Kurbatov ◽  
...  

AbstractIce cores provide a robust reconstruction of past climate. However, development of timescales by annual-layer counting, essential to detailed climate reconstruction and interpretation, on ice cores collected at low-accumulation sites or in regions of compressed ice, is problematic due to closely spaced layers. Ice-core analysis by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) provides sub-millimeter-scale sampling resolution (on the order of 100 μm in this study) and the low detection limits (ng L−1) necessary to measure the chemical constituents preserved in ice cores. We present a newly developed cryocell that can hold a 1 m long section of ice core, and an alternative strategy for calibration. Using ice-core samples from central Greenland, we demonstrate the repeatability of multiple ablation passes, highlight the improved sampling resolution, verify the calibration technique and identify annual layers in the chemical profile in a deep section of an ice core where annual layers have not previously been identified using chemistry. In addition, using sections of cores from the Swiss/Italian Alps we illustrate the relationship between Ca, Na and Fe and particle concentration and conductivity, and validate the LA-ICP-MS Ca profile through a direct comparison with continuous flow analysis results.


2021 ◽  
Vol 3 ◽  
Author(s):  
Pascal Bohleber ◽  
Marco Roman ◽  
Carlo Barbante ◽  
Sebastiano Vascon ◽  
Kaleem Siddiqi ◽  
...  

Polar ice cores play a central role in studies of the earth’s climate system through natural archives. A pressing issue is the analysis of the oldest, highly thinned ice core sections, where the identification of paleoclimate signals is particularly challenging. For this, state-of-the-art imaging by laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) has the potential to be revolutionary due to its combination of micron-scale 2D chemical information with visual features. However, the quantitative study of record preservation in chemical images raises new questions that call for the expertise of the computer vision community. To illustrate this new inter-disciplinary frontier, we describe a selected set of key questions. One critical task is to assess the paleoclimate significance of single line profiles along the main core axis, which we show is a scale-dependent problem for which advanced image analysis methods are critical. Another important issue is the evaluation of post-depositional layer changes, for which the chemical images provide rich information. Accordingly, the time is ripe to begin an intensified exchange between the two scientific communities of computer vision and ice core science. The collaborative building of a new framework for investigating high-resolution chemical images with automated image analysis techniques will also benefit the already wide-spread application of laser-ablation inductively-coupled plasma mass spectrometry chemical imaging in the geosciences.


2017 ◽  
Vol 29 (4) ◽  
pp. 382-393
Author(s):  
A. Massam ◽  
S.B. Sneed ◽  
G.P. Lee ◽  
R.R. Tuckwell ◽  
R. Mulvaney ◽  
...  

AbstractA model to estimate the annual layer thickness of deposited snowfall at a deep ice core site, compacted by vertical strain with respect to depth, is assessed using ultra-high-resolution laboratory analytical techniques. A recently established technique of high-resolution direct chemical analysis of ice using ultra-violet laser ablation inductively-coupled plasma mass spectrometry (LA ICP-MS) has been applied to ice from the Berkner Island ice core, and compared with results from lower resolution techniques conducted on parallel sections of ice. The results from both techniques have been analysed in order to assess the capability of each technique to recover seasonal cycles from deep Antarctic ice. Results do not agree with the annual layer thickness estimates from the age–depth model for individual samples <1 m long as the model cannot reconstruct the natural variability present in annual accumulation. However, when compared with sections >4 m long, the deviation between the modelled and observational layer thicknesses is minimized to within two standard deviations. This confirms that the model is capable of successfully estimating mean annual layer thicknesses around analysed sections. Furthermore, our results confirm that the LA ICP-MS technique can reliably recover seasonal chemical profiles beyond standard analytical resolution.


2016 ◽  
Vol 31 (4) ◽  
pp. 1030-1033 ◽  
Author(s):  
J. S. Hamilton ◽  
E. L. Gorishek ◽  
P. M. Mach ◽  
D. Sturtevant ◽  
M. L. Ladage ◽  
...  

A new single Peltier element ablation cell is described and its applicability to biological sampling discussed to evaluate its performance.


Sign in / Sign up

Export Citation Format

Share Document