Root system architecture with and without root hairs: Consequences for nutrient and water uptake efficiency and related spatio-temporal patterns

Author(s):  
Eva Lippold ◽  
Maxime Phalempin ◽  
Steffen Schlüter ◽  
Robert Mikutta ◽  
Doris Vetterlein

<p>Root hairs substantially contribute to the acquisition of nutrients and potentially also to water uptake. Hence, they might have a strong impact on plant growth under nutrient- or water-limited conditions. As little information presently exists about differences in matter uptake to plants either with or without root hairs, we hypothesize that the absence of root hairs will be compensated by an increase in root growth to overcome the hair-less handicap. Within the DFG-funded Priority Program 2089, we compare two different genotypes (i.e. <em>Zea mays</em> “Wild Type” and its corresponding hair-less mutant “<em>rth3</em>”) grown in two different substrates (loam and sand) in column experiments. X-ray computed tomography (X-ray CT) was used to investigate the spatial-temporal change of root architecture during growth. Additionally, total root length was measured after destructive sampling at harvest with WinRhizo. Contrary to our expectation, the reduced root surface area available for water and nutrient uptake in case of the hair-less cultivar was not compensated by more intensive root growth. The substrate had a higher impact on root growth than the presence or absence of root-hairs. For shoot growth (shoot biomass), both factors (genotype, substrate) had a significant impact. As a consequence, nutrient uptake efficiency (uptake per unit root length) was clearly increased by the presence of root-hairs, irrespective of the substrate. Water uptake efficiency did not show any difference between genotypes under the well-watered conditions studied. In general, water uptake per unit root length was higher in sand compared to loam. Differences in nutrient uptake efficiency should be reflected in the extent of nutrient depletion gradients around roots. To address such biochemical gradients we develop a new subsampling scheme based on extraction of undisturbed subsamples. Subsamples will be imaged with micro X-ray fluorescence (μXRF) for elemental mapping. The 2D µXRF image will be registered into the 3D X-ray CT image to relate the extent of gradients to the age of the respective root segment.</p><p> </p><p>This project was carried out in the framework of the priority programme 2089 “Rhizosphere spatiotemporal organisation - a key to rhizosphere functions” funded by DFG (project number 403640293).</p>

2010 ◽  
Vol 388 (3-4) ◽  
pp. 273-279 ◽  
Author(s):  
Marta Álvarez ◽  
Lorenzo Proia ◽  
Antonio Ruggiero ◽  
Francesc Sabater ◽  
Andrea Butturini

1986 ◽  
Vol 106 (1) ◽  
pp. 53-59 ◽  
Author(s):  
P. B. Barraclough

SUMMARYNutrient inflows, that is the amount of nutrient absorbed per unit root length per unit time, have been determined for several winter wheat crops (cv. Hustler) with grain yields in the range 8–11 t/ha (85% D.m.). Inflows reached a maximum in April or May with values in the range 13–34, 0·5–1·6, 3·5–13, 0·9–1·8 and 0·35–0·60 × 10–14 mol/cm root/sec for N, P, K, Ca and Mg respectively. The concentration in the soil solution necessary to maintain inflows by diffusion of nutrient through the soil was calculated using a nutrient uptake model. For an October-sown crop the model predicted that soil solution concentrations of 165 μΜ N, 14 μΜ P and 56 μΜ K were needed to sustain the observed maximum inflows, whereas for a September-sown crop, with a larger root system, even lower values of 106 μΜ N, 8 μΜ P and 36 μΜ K were needed. It appears that nutrient transport is unlikely to limit uptake by winter wheat crops growing in moist, well fertilized soils, at least for crops up to about 17 t/ha of total dry matter.


1988 ◽  
Vol 68 (2) ◽  
pp. 425-432 ◽  
Author(s):  
Y. K. SOON

A field study was conducted in 1984 and 1985 to determine the spatial distribution with time of root length density of spring barley (Hordeum vulgare L.) growing in a Black Solod in northwestern Alberta. The weakly solonetzic Bnt horizon present in the solodic soil appeared not to inhibit root growth, and roots were present to 90 cm depth of soil. Drought in 1985 reduced root growth in general, and in particular in the surface soil (0 – 15 cm depth) between crop rows. Root growth in both years continued well after ear emergence and attained a maximum total length (14.5 and 9.5 km m−2 in 1984 and 1985, respectively) some time into grain-filling. Water uptake rates of up to 1.3 cm3 m−1 d−1 were observed; this maximum rate was associated with younger roots in the 60- to 90-cm depth in 1984. Low availability of subsoil water in 1985, however, resulted in low root density and water uptake rates in the 60- to 90-cm depth. The weighted mean uptake rate for the entire root system was slightly more than 0.4 cm3 m−1 d−1 in 1984 and about half that in 1985. Key words: Barley, Hordeum vulgare L., solonetzic soil, water inflow, root growth, root length density


2003 ◽  
Vol 255 (1) ◽  
pp. 361-373 ◽  
Author(s):  
Alain Pierret ◽  
Mac Kirby ◽  
Chris Moran

Sign in / Sign up

Export Citation Format

Share Document