Organic soil amendments as a tool to increase biological activity and C sequestration in clay soil

Author(s):  
Jussi Heinonsalo ◽  
Anna-Reetta Salonen ◽  
Rashmi Shrestha ◽  
Subin Kalu ◽  
Outi-Maaria Sietiö ◽  
...  

<p>Soil C sequestration through improved agricultural management practices has been suggested to be a cost-efficient tool to mitigate climate change as increased soil C storage removes CO<sub>2</sub> from the atmosphere. In addition, improved soil organic carbon (SOC) content has positive impacts on farming though better soil structure and resilience against climate extremes through e.g. better water holding capacity. In some parts of the world, low SOC content is highly critical problem for overall cultivability of soils because under certain threshold levels of SOC, soil loses its ability to maintain essential ecosystem services for plant production. Soil organic amendments may increase soil C stocks, improve soil structure and boost soil microbial activities with potential benefits in plant growth and soil C sequestration. Additional organic substrates may stimulate microbial diversity that has been connected to higher SOC content and healthy soils.</p><p>We performed a two-year field experiment where the aim was to investigate whether different organic soil amendments have an impact on soil microbial parameters, soil structure and C sequestration.</p><p>The experiment was performed in Parainen in southern Finland on a clay field where oat (Avena sativa) was the cultivated crop. Four different organic soil amendments were used (two wood-based fiber products that were leftover side streams of pulp and paper industry; and two different wood-based biochars). Soil amendments were applied in 2016. Soil C/N analysis was performed in the autumns 2016-2018 and soil aggregate in the summer and autumn 2018, as well as measures to estimate soil microbial activity: microbial biomass, soil respiration, enzymatic assays, microbial community analysis with Biolog ®  EcoPlates and litter bag decomposition experiment. The relative share of bacteria and fungi was determined using qPCR from soil samples taken in the autumns 2016, 2017 and 2018.</p><p>Data on how the studied organic soil amendments influence soil structure and C content, as well as soil microbial parameters will be presented and discussed.</p>

2020 ◽  
Author(s):  
Mike Beare ◽  
Erin Lawrence-Smith ◽  
Denis Curtin ◽  
Sam McNally ◽  
Frank Kelliher ◽  
...  

<p><span>The global atmospheric concentration of CO<sub>2</sub> and other greenhouse gases (GHG) is steadily increasing. It is estimated that, worldwide, soil C sequestration could offset GHG emissions by 400–1200 Mt C per year. Relative to 1990, New Zealand’s CH<sub>4</sub> and N<sub>2</sub>O emissions in 2013 had increased by 7% and 23% respectively, which translates to an annual emission increase of 1.09 Mt C that could be offset by a similar annual increase in soil C stock. Recent research has shown that some New Zealand pastoral soils are under-saturated in SOC. Subsurface soils (15–30 cm depth) typically have a greater soil C saturation deficit than topsoil (0-30 cm) because plant C inputs (roots) are lower. Using management practices that expose more of the under-saturated soil to higher C inputs could result in increased soil C storage and stabilisation.</span></p><p><span>Pasture renewal (destruction and re-establishment of pasture) is promoted to livestock farmers to improve pasture performance. This typically involves shallow cultivation or direct drilling to establish new grass. Whereas shallow cultivation of soil typically results in a loss of SOC, deeper full inversion tillage (FIT) of soil would result in the burial of C-rich topsoil in closer proximity to mineral material that has a higher stabilisation capacity.  Buried SOC is expected to have a slower decomposition rate owing to less variable temperatures and more anoxic conditions. Deep FIT would also bring under-saturated mineral soil to the surface, where the deposition of SOC from high producing pastures could increase the stabilisation of SOC.  Both the slower turnover of buried SOM and greater stabilisation of new carbon on under-saturated minerals at the soil surface are expected to result in increased SOC sequestration. </span></p><p><span>There is a lack of experimental data to directly address the effect of FIT on soil C stocks in pastoral soils. We applied a simple empirical model to predicting changes in soil C stocks following a one-off application of FIT (30 cm) during pasture renewal. The model accounts for the decomposition of SOC in buried topsoil and the accumulation of C in the new topsoil (inverted subsoil). The model was used to derive national estimates of soil C sequestration under different scenarios of C accumulation efficiency, farmer adoption of FIT and pasture renewal rates.</span></p><p>Our modelled estimates suggest that 32 Mt C could be sequestered over 20 years following a one-time application of FIT (0-30 cm) to 2 M ha of High Producing Grasslands on suitable New Zealand soils. This estimate is based on 100% accumulation efficiency (i.e. topsoil C stocks are returned to pre-inversion levels within 20 years) and a 10% annual rate of pasture renewal. In the absence of direct experimental evidence, a more conservative estimate is warranted, where topsoil C stocks are projected to return to 80% of pre-inversion levels, thus sequestering 20 Mt C. This paper will present our modelled estimates of SOC sequestration during FIT pasture renewal and discuss the potential benefits and adverse effects of deploying this management practice.</p>


2015 ◽  
Vol 12 (12) ◽  
pp. 3805-3818 ◽  
Author(s):  
M. F. Adame ◽  
N. S. Santini ◽  
C. Tovilla ◽  
A. Vázquez-Lule ◽  
L. Castro ◽  
...  

Abstract. Riverine wetlands are created and transformed by geomorphological processes that determine their vegetation composition, primary production and soil accretion, all of which are likely to influence C stocks. Here, we compared ecosystem C stocks (trees, soil and downed wood) and soil N stocks of different types of riverine wetlands (marsh, peat swamp forest and mangroves) whose distribution spans from an environment dominated by river forces to an estuarine environment dominated by coastal processes. We also estimated soil C sequestration rates of mangroves on the basis of soil C accumulation. We predicted that C stocks in mangroves and peat swamps would be larger than marshes, and that C, N stocks and C sequestration rates would be larger in the upper compared to the lower estuary. Mean C stocks in mangroves and peat swamps (784.5 ± 73.5 and 722.2 ± 63.6 MgC ha−1, respectively) were higher than those of marshes (336.5 ± 38.3 MgC ha−1). Soil C and N stocks of mangroves were highest in the upper estuary and decreased towards the lower estuary. C stock variability within mangroves was much lower in the upper estuary (range 744–912 MgC ha−1) compared to the intermediate and lower estuary (range 537–1115 MgC ha−1) probably as a result of a highly dynamic coastline. Soil C sequestration values were 1.3 ± 0.2 MgC ha−1 yr−1 and were similar across sites. Estimations of C stocks within large areas need to include spatial variability related to vegetation composition and geomorphological setting to accurately reflect variability within riverine wetlands.


2021 ◽  
Vol 118 (16) ◽  
pp. e2020790118
Author(s):  
Xiankai Lu ◽  
Peter M. Vitousek ◽  
Qinggong Mao ◽  
Frank S. Gilliam ◽  
Yiqi Luo ◽  
...  

Terrestrial ecosystem carbon (C) sequestration plays an important role in ameliorating global climate change. While tropical forests exert a disproportionately large influence on global C cycling, there remains an open question on changes in below-ground soil C stocks with global increases in nitrogen (N) deposition, because N supply often does not constrain the growth of tropical forests. We quantified soil C sequestration through more than a decade of continuous N addition experiment in an N-rich primary tropical forest. Results showed that long-term N additions increased soil C stocks by 7 to 21%, mainly arising from decreased C output fluxes and physical protection mechanisms without changes in the chemical composition of organic matter. A meta-analysis further verified that soil C sequestration induced by excess N inputs is a general phenomenon in tropical forests. Notably, soil N sequestration can keep pace with soil C, based on consistent C/N ratios under N additions. These findings provide empirical evidence that below-ground C sequestration can be stimulated in mature tropical forests under excess N deposition, which has important implications for predicting future terrestrial sinks for both elevated anthropogenic CO2 and N deposition. We further developed a conceptual model hypothesis depicting how soil C sequestration happens under chronic N deposition in N-limited and N-rich ecosystems, suggesting a direction to incorporate N deposition and N cycling into terrestrial C cycle models to improve the predictability on C sink strength as enhanced N deposition spreads from temperate into tropical systems.


2011 ◽  
Vol 47 (Special Issue) ◽  
pp. S39-S42 ◽  
Author(s):  
G. Civeira

Recently soils have gained more attention within the global change debate as the largest terrestrial carbon (C) pool. Different soils and vegetation types have substantial impacts on many of the processes that take place in the ecosystem functioning and thus in soil organic C stocks. An accurate estimation of vegetation C inputs to soils may aid in more precise estimation of the future release or sequestration of soil organic C. Wheat production affects C inputs and thus soil C sequestration in soils. The objective of this research was to evaluate C inputs by wheat, from 1993 to 2002 in the Pampas Region. The estimated C input rate by wheat was greater in the humid subregion than in the semiarid subregion: 0.9 and 0.75 Mg C/ha/year, correspondingly. This pattern agrees with the observation that precipitation constrains plant production in arid to subhumid ecosystems. The average organic C input by wheat into the soils throughout the period was 8.1 Mg C/ha in the humid subregion and, 6.75 Mg C/ha in the semiarid subregion.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaorong Lu ◽  
Yan Yin ◽  
Shaopeng Li ◽  
Hongliang Ma ◽  
Ren Gao ◽  
...  

Biochar has received much attention as a strategy to enhance soil carbon (C) sequestration and mitigate climate change. Previous studies found that the feedstock and pyrolysis temperature can largely determine biochar properties, which in turn, impact the stability of native soil organic matter (SOM) and soil microorganisms. The Schima superba and Cunninghamia lanceolata are two tree species widely distributed in the subtropical region of southern China, but how the biochars from these two species influence the soil C sequestration and microbial communities of plantation remain poorly understood. In this study, we produced biochars from these two different feedstocks (13C-labeled S. superba and C. lanceolata litters) at three pyrolysis temperatures (350°C, 550°C, 750°C), then added them to the soils from C. lanceolata plantation, and maintained the experiments at 25°C for 112 days. We found both C mineralization and soil microbial community structures were strongly, but inconsistent, affected by biochar feedstock and pyrolysis temperature. The C. lanceolata biochar triggered the negative priming effect faster and greater compared with the S. superba biochar amendment. Biochars produced at 550°C showed the most significant negative priming effect during the whole incubation period, regardless of the different feedstocks. The cumulative amount of CO2 derived from biochars was significantly decreased with pyrolysis temperature (p < 0.05), indicating that biochars prepared at higher temperatures were more stable in the soil. Further, the soil microbial community structure was only affected by biochar pyrolysis temperature rather than biochar feedstock and their interaction. Together, our results reveal that biochar feedstock and pyrolysis temperature may play more important roles in dictating the priming effect than the structure of microbial community for C. lanceolata plantation. Overall, we concluded that the biochars prepared at 550°C could rapidly decrease the turnover of native SOM in a short term and biochar amendment has the potential to be a management practice for soil C sequestration in the C. lanceolata plantation.


2020 ◽  
Author(s):  
Albert C. Brangarí ◽  
Stefano Manzoni ◽  
Johannes Rousk

<p>Soils are continuously exposed to recurrent cycles of drying and rewetting, for instance, when extended periods of drought are followed by rainfall events. For nearly a century it has been known that the balance of the soil C budget is affected by these moisture fluctuations, which is characterized by very large mineralization losses when dry soils are rewetted. In some ecosystems, the soil C losses resulting from this phenomenon (“the Birch effect”) even represent a dominant fraction of the annual C-transfer from soils to the atmosphere. However, to balance the soil C budget, the microbial control of C input to the soil during these events also needs to be known. It was recently discovered that the growth of microorganisms, driving C stabilization in soils, has a far slower response to rewetting than does respiration. This results in a pronounced and dynamic disconnection between the mechanisms controlling microbial respiration and growth. Despite the significance of this decoupling for the C budget and the long-term balance of soil C stocks, this feature has so far been entirely overlooked by biogeochemical models, potentially leading to a failure to capture the capacity of soils to mitigate the effects of climate change.</p><p>To close this knowledge gap, we developed a new process-based soil microbial model that includes a wide range of physical, chemical and biological mechanisms to explore the nature of soil C dynamics induced by moisture changes. The model was validated using respiration data from soils exposed to repeated cycles of drying and rewetting which has been frequently studied (Miller et al., 2005, Soil Biol Biochem) and compared to other models existing in the literature. The proposed model was able to capture, at once and for the first time, the respiration data and the decoupled behaviour of growth. Simulation results identified the drought-legacy effects on C use efficiency and microbial physiology as the main mechanisms controlling the soil responses to moisture fluctuations. This represents a critical step towards unravelling the C sequestration capacity of soils, its drivers and feedback on climate.</p>


2015 ◽  
Vol 12 (2) ◽  
pp. 1015-1045 ◽  
Author(s):  
M. F. Adame ◽  
N. S. Santini ◽  
C. Tovilla ◽  
A. Vázquez-Lule ◽  
L. Castro

Abstract. Deforestation and degradation of wetlands are important causes of carbon dioxide emissions to the atmosphere. Accurate measurements of carbon (C) stocks and sequestration rates are needed for incorporating wetlands into conservation and restoration programs with the aim for preventing carbon emissions. Here, we assessed whole ecosystem C stocks (trees, soil and downed wood) and soil N stocks of riverine wetlands (mangroves, marshes and peat swamps) within La Encrucijada Biosphere Reserve in the Pacific coast of Mexico. We also estimated soil C sequestration rates of mangroves on the basis of soil accumulation. We hypothesized that riverine wetlands have large C stocks, and that upland mangroves have larger C and soil N stocks compared to lowland mangroves. Riverine wetlands had large C stocks with a mean of 784.5 ± 73.5 Mg C ha-1 for mangroves, 722.2 ± 83.4 Mg C ha-1 for peat swamps, and 336.5 ± 38.3 Mg C ha-1 for marshes. C stocks and soil N stocks were in general larger for upland (833.0 ± 7.2 Mg C ha-1; 26.4 ± 0.5 Mg N ha-1) compared to lowland mangroves (659.5 ± 18.6 Mg C ha-1; 13.8 ± 2.0 Mg N ha-1). Soil C sequestration values were 1.3 ± 0.2 Mg C ha-1 yr-1. The Reserve stores 32.5 Mtons of C or 119.3 Mtons of CO2, with mangroves sequestering (via soil accumulation) 27 762 ± 0.5 Mg C ha-1 every year.


2014 ◽  
Vol 75 ◽  
pp. 13-23 ◽  
Author(s):  
Shawn T. Lucas ◽  
Elisa M. D’Angelo ◽  
Mark A. Williams

Author(s):  
Meng Na ◽  
Xiaoyang Sun ◽  
Yandong Zhang ◽  
Zhihu Sun ◽  
Johannes Rousk

AbstractSoil carbon (C) reservoirs held in forests play a significant role in the global C cycle. However, harvesting natural forests tend to lead to soil C loss, which can be countered by the establishment of plantations after clear cutting. Therefore, there is a need to determine how forest management can affect soil C sequestration. The management of stand density could provide an effective tool to control soil C sequestration, yet how stand density influences soil C remains an open question. To address this question, we investigated soil C storage in 8-year pure hybrid larch (Larix spp.) plantations with three densities (2000 trees ha−1, 3300 trees ha−1 and 4400 trees ha−1), established following the harvesting of secondary mixed natural forest. We found that soil C storage increased with higher tree density, which mainly correlated with increases of dissolved organic C as well as litter and root C input. In addition, soil respiration decreased with higher tree density during the most productive periods of warm and moist conditions. The reduced SOM decomposition suggested by lowered respiration was also corroborated with reduced levels of plant litter decomposition. The stimulated inputs and reduced exports of C from the forest floor resulted in a 40% higher soil C stock in high- compared to low-density forests within 8 years after plantation, providing effective advice for forest management to promote soil C sequestration in ecosystems.


Sign in / Sign up

Export Citation Format

Share Document