scholarly journals Estimation of carbon inputs to soils from wheat in the Pampas Region, Argentina

2011 ◽  
Vol 47 (Special Issue) ◽  
pp. S39-S42 ◽  
Author(s):  
G. Civeira

Recently soils have gained more attention within the global change debate as the largest terrestrial carbon (C) pool. Different soils and vegetation types have substantial impacts on many of the processes that take place in the ecosystem functioning and thus in soil organic C stocks. An accurate estimation of vegetation C inputs to soils may aid in more precise estimation of the future release or sequestration of soil organic C. Wheat production affects C inputs and thus soil C sequestration in soils. The objective of this research was to evaluate C inputs by wheat, from 1993 to 2002 in the Pampas Region. The estimated C input rate by wheat was greater in the humid subregion than in the semiarid subregion: 0.9 and 0.75 Mg C/ha/year, correspondingly. This pattern agrees with the observation that precipitation constrains plant production in arid to subhumid ecosystems. The average organic C input by wheat into the soils throughout the period was 8.1 Mg C/ha in the humid subregion and, 6.75 Mg C/ha in the semiarid subregion.

2021 ◽  
Author(s):  
Jussi Heinonsalo ◽  
Anna-Reetta Salonen ◽  
Rashmi Shrestha ◽  
Subin Kalu ◽  
Outi-Maaria Sietiö ◽  
...  

<p>Soil C sequestration through improved agricultural management practices has been suggested to be a cost-efficient tool to mitigate climate change as increased soil C storage removes CO<sub>2</sub> from the atmosphere. In addition, improved soil organic carbon (SOC) content has positive impacts on farming though better soil structure and resilience against climate extremes through e.g. better water holding capacity. In some parts of the world, low SOC content is highly critical problem for overall cultivability of soils because under certain threshold levels of SOC, soil loses its ability to maintain essential ecosystem services for plant production. Soil organic amendments may increase soil C stocks, improve soil structure and boost soil microbial activities with potential benefits in plant growth and soil C sequestration. Additional organic substrates may stimulate microbial diversity that has been connected to higher SOC content and healthy soils.</p><p>We performed a two-year field experiment where the aim was to investigate whether different organic soil amendments have an impact on soil microbial parameters, soil structure and C sequestration.</p><p>The experiment was performed in Parainen in southern Finland on a clay field where oat (Avena sativa) was the cultivated crop. Four different organic soil amendments were used (two wood-based fiber products that were leftover side streams of pulp and paper industry; and two different wood-based biochars). Soil amendments were applied in 2016. Soil C/N analysis was performed in the autumns 2016-2018 and soil aggregate in the summer and autumn 2018, as well as measures to estimate soil microbial activity: microbial biomass, soil respiration, enzymatic assays, microbial community analysis with Biolog ®  EcoPlates and litter bag decomposition experiment. The relative share of bacteria and fungi was determined using qPCR from soil samples taken in the autumns 2016, 2017 and 2018.</p><p>Data on how the studied organic soil amendments influence soil structure and C content, as well as soil microbial parameters will be presented and discussed.</p>


2021 ◽  
Author(s):  
Rose Abramoff ◽  
Bertrand Guenet ◽  
Haicheng Zhang ◽  
Katerina Georgiou ◽  
Xiaofeng Xu ◽  
...  

<p>Soil carbon (C) models are used to predict C sequestration responses to climate and land use change. Yet, the soil models embedded in Earth system models typically do not represent processes that reflect our current understanding of soil C cycling, such as microbial decomposition, mineral association, and aggregation. Rather, they rely on conceptual pools with turnover times that are fit to bulk C stocks and/or fluxes. As measurements of soil fractions become increasingly available, soil C models that represent these measurable quantities can be evaluated more accurately. Here we present Version 2 (V2) of the Millennial model, a soil model developed to simulate C pools that can be measured by extraction or fractionation, including particulate organic C, mineral-associated organic C, aggregate C, microbial biomass, and dissolved organic C. Model processes have been updated to reflect the current understanding of mineral-association, temperature sensitivity and reaction kinetics, and different model structures were tested within an open-source framework. We evaluated the ability of Millennial V2 to simulate total soil organic C (SOC), as well as the mineral-associated and particulate fractions, using three soil fractionation data sets spanning a range of climate and geochemistry in Australia (N=495), Europe (N=176), and across the globe (N=730). Millennial V2 (RMSE = 1.98 – 4.76 kg, AIC = 597 – 1755) generally predicts SOC content better than the widely-used Century model (RMSE = 2.23 – 4.8 kg, AIC = 584 – 2271), despite an increase in process complexity and number of parameters. Millennial V2 reproduces between-site variation in SOC across a gradient of plant productivity, and predicts SOC turnover times similar to those of a global meta-analysis. Millennial V2 updates the conceptual Century model pools and processes and represents our current understanding of the roles that microbial activity, mineral association and aggregation play in soil C sequestration.</p>


2019 ◽  
Vol 10 (2) ◽  
pp. 233-255 ◽  
Author(s):  
Efrén López-Blanco ◽  
Jean-François Exbrayat ◽  
Magnus Lund ◽  
Torben R. Christensen ◽  
Mikkel P. Tamstorf ◽  
...  

Abstract. There is a significant knowledge gap in the current state of the terrestrial carbon (C) budget. Recent studies have highlighted a poor understanding particularly of C pool transit times and of whether productivity or biomass dominate these biases. The Arctic, accounting for approximately 50 % of the global soil organic C stocks, has an important role in the global C cycle. Here, we use the CARbon DAta MOdel (CARDAMOM) data-assimilation system to produce pan-Arctic terrestrial C cycle analyses for 2000–2015. This approach avoids using traditional plant functional type or steady-state assumptions. We integrate a range of data (soil organic C, leaf area index, biomass, and climate) to determine the most likely state of the high-latitude C cycle at a 1∘ × 1∘ resolution and also to provide general guidance about the controlling biases in transit times. On average, CARDAMOM estimates regional mean rates of photosynthesis of 565 g C m−2 yr−1 (90 % confidence interval between the 5th and 95th percentiles: 428, 741), autotrophic respiration of 270 g C m−2 yr−1 (182, 397) and heterotrophic respiration of 219 g C m−2 yr−1 (31, 1458), suggesting a pan-Arctic sink of −67 (−287, 1160) g Cm−2 yr−1, weaker in tundra and stronger in taiga. However, our confidence intervals remain large (and so the region could be a source of C), reflecting uncertainty assigned to the regional data products. We show a clear spatial and temporal agreement between CARDAMOM analyses and different sources of assimilated and independent data at both pan-Arctic and local scales but also identify consistent biases between CARDAMOM and validation data. The assimilation process requires clearer error quantification for leaf area index (LAI) and biomass products to resolve these biases. Mapping of vegetation C stocks and change over time and soil C ages linked to soil C stocks is required for better analytical constraint. Comparing CARDAMOM analyses to global vegetation models (GVMs) for the same period, we conclude that transit times of vegetation C are inconsistently simulated in GVMs due to a combination of uncertainties from productivity and biomass calculations. Our findings highlight that GVMs need to focus on constraining both current vegetation C stocks and net primary production to improve a process-based understanding of C cycle dynamics in the Arctic.


2021 ◽  
Vol 18 (18) ◽  
pp. 5185-5202
Author(s):  
Juhwan Lee ◽  
Raphael A. Viscarra Rossel ◽  
Mingxi Zhang ◽  
Zhongkui Luo ◽  
Ying-Ping Wang

Abstract. Land use and management practices affect the response of soil organic carbon (C) to global change. Process-based models of soil C are useful tools to simulate C dynamics, but it is important to bridge any disconnect that exists between the data used to inform the models and the processes that they depict. To minimise that disconnect, we developed a consistent modelling framework that integrates new spatially explicit soil measurements and data with the Rothamsted carbon model (Roth C) and simulates the response of soil organic C to future climate change across Australia. We compiled publicly available continental-scale datasets and pre-processed, standardised and configured them to the required spatial and temporal resolutions. We then calibrated Roth C and ran simulations to estimate the baseline soil organic C stocks and composition in the 0–0.3 m layer at 4043 sites in cropping, modified grazing, native grazing and natural environments across Australia. We used data on the C fractions, the particulate, mineral-associated and resistant organic C (POC, MAOC and ROC, respectively) to represent the three main C pools in the Roth C model's structure. The model explained 97 %–98 % of the variation in measured total organic C in soils under cropping and grazing and 65 % in soils under natural environments. We optimised the model at each site and experimented with different amounts of C inputs to simulate the potential for C accumulation under constant climate in a 100-year simulation. With an annual increase of 1 Mg C ha−1 in C inputs, the model simulated a potential soil C increase of 13.58 (interquartile range 12.19–15.80), 14.21 (12.38–16.03) and 15.57 (12.07–17.82) Mg C ha−1 under cropping, modified grazing and native grazing and 3.52 (3.15–4.09) Mg C ha−1 under natural environments. With projected future changes in climate (+1.5, 2 and 5.0 ∘C) over 100 years, the simulations showed that soils under natural environments lost the most C, between 3.1 and 4.5 Mg C ha−1, while soils under native grazing lost the least, between 0.4 and 0.7 Mg C ha−1. Soil under cropping lost between 1 and 2.7 Mg C ha−1, while those under modified grazing showed a slight increase with temperature increases of 1.5 ∘C, but with further increases of 2 and 5 ∘C the median loss of TOC was 0.28 and 3.4 Mg C ha−1, respectively. For the different land uses, the changes in the C fractions varied with changes in climate. An empirical assessment of the controls on the C change showed that climate, pH, total N, the C : N ratio and cropping were the most important controls on POC change. Clay content and climate were dominant controls on MAOC change. Consistent and explicit soil organic C simulations improve confidence in the model's estimations, facilitating the development of sustainable soil management under global change.


2020 ◽  
Author(s):  
Juhwan Lee ◽  
Raphael A. Viscarra Rossel ◽  
Zhongkui Luo ◽  
Ying Ping Wang

Abstract. We simulated soil organic carbon (C) dynamics across Australia with the Rothamsted carbon model (Rᴏᴛʜ C) under a framework that connects new spatially-explicit soil measurements and data with the model. Doing so helped to bridge the disconnection that exists between datasets used to inform the model and the processes that it depicts. Under this framework, we compiled continental-scale datasets and pre-processed, standardised and configured them to the required spatial and temporal resolutions. We then calibrated Rᴏᴛʜ C and run simulations to predict the baseline soil organic C stocks and composition in the 0–0.3 m layer at 4,043 sites in cropping, modified grazing, native grazing, and natural environments across Australia. The Rᴏᴛʜ C model uses measured C fractions, the particulate, humus, and resistant organic C (POC, HOC and ROC, respectively) to represent the three main C pools in its structure. The model explained 97–98 % of the variation in measured total organic C in soils under cropping and grazing, and 65 % in soils under natural environments. We optimised the model at each site and experimented with different amounts of C inputs to predict the potential for C accumulation in a 100-year simulation. With an annual increase of 1 Mg C ha−1 in C inputs, the model predicted a potential soil C increase of 13.58 (interquartile range 12.19–15.80), 14.21 (12.38–16.03), and 15.57 (12.07–17.82) Mg C ha−1 under cropping, modified grazing and native grazing, and 3.52 (3.15–4.09) Mg C ha−1 under natural environments. Soils under native grazing were the most potentially vulnerable to C decomposition and loss, while soils under natural environments were the least vulnerable. An empirical assessment of the controls on the C change showed that climate, pH, total N, the C:N ratio, and cropping were the most important controls on POC change. Clay content and climate were dominant controls on HOC change. Consistent and explicit soil organic C simulations improve confidence in the model's predictions, contributing to the development of sustainable soil management under global change.


2000 ◽  
Vol 80 (3) ◽  
pp. 429-435 ◽  
Author(s):  
D. Curtin ◽  
F. Selles ◽  
H. Wang ◽  
R. P. Zentner ◽  
C. A. Campbell

Planting of cultivated land with perennial forages may increase C sequestration in soil organic matter and contribute to atmospheric CO2 mitigation strategies. However, little is known of the effectiveness of introduced grasses in restoring organic C in cultivated soils of the Canadian prairies. Our objective was to evaluate the C sequestration potential of crested wheatgrass (CWG) (Agropyron cristatum L. Gaertn.), a widely introduced, early-season grass. In 1995 and 1996, we measured soil CO2 fluxes, C inputs in plant material and total soil C under CWG and a fallow-wheat (Triticum aestivum L.)-wheat rotation (F-W-W). These were two of the treatments in a replicated crop rotation experiment initiated in 1987 in southwestern Saskatchewan on a medium-textured soil that had previously been under long-term wheat production. Average to above-average growing season (1 May to 31 July) precipitation in 1995–1996 resulted in annual inputs of C in wheat residues of 3000–4500 kg ha−1. Growth of CWG, which was hayed and removed, was relatively poor in both years, but especially in 1995 when dry matter yield was only 1300 kg ha−1. For the 1988–1996 period, there was a strong correlation (R2 = 0.81; P < 0.001) between CWG yield and precipitation received in May, showing the importance of early spring rains determining CWG yield and C inputs to the soil. Carbon inputs under CWG (1200 kg ha−1 in 1995 and 2400 kg ha−1 in 1996) were less than under wheat but CO2-C emissions were similar under CWG and wheat. Soil C measurements in fall 1996 confirmed that CWG did not gain C relative to the F-W-W rotation. Although failure of CWG soil to store more C than cultivated soil may be partly because weather conditions during the experiment were more favourable for wheat than CWG, our results cast doubt on the ability of CWG to restore C stocks in prairie soils degraded by long-term cropping. Key words: Carbon sequestation, carbon dioxide emissions, wheat, crested wheatgrass, fallow


Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 442 ◽  
Author(s):  
Miguel A. Navarrete-Poyatos ◽  
Rafael M. Navarro-Cerrillo ◽  
Miguel A. Lara-Gómez ◽  
Joaquín Duque-Lazo ◽  
Maria de los Angeles Varo ◽  
...  

Accurate estimation of forest biomass to enable the mapping of forest C stocks over large areas is of considerable interest nowadays. Airborne laser scanning (ALS) systems bring a new perspective to forest inventories and subsequent biomass estimation. The objective of this research was to combine growth models used to update old inventory data to a reference year, low-density ALS data, and k-nearest neighbor (kNN) algorithm Random Forest to conduct biomass inventories aimed at estimating the C sequestration capacity in large Pinus plantations. We obtained a C stock in biomass (Wt-S) of 12.57 Mg ha−1, ranging significantly from 19.93 Mg ha−1 for P. halepensis to 49.05 Mg ha−1 for P. nigra, and a soil organic C stock of the composite soil samples (0–40 cm) ranging from 20.41 Mg ha−1 in P. sylvestris to 37.32 Mg ha−1 in P. halepensis. When generalizing these data to the whole area, we obtained an overall C-stock value of 48.01 Mg C ha−1, ranging from 23.96 Mg C ha−1 for P. halepensis to 58.09 Mg C ha−1 for P. nigra. Considering the mean value of the on-site C stock, the study area sustains 1,289,604 Mg per hectare (corresponding to 4,732,869 Mg CO2), with a net increase of 4.79 Mg ha−1 year−1. Such C cartography can help forest managers to improve forest silviculture with regard to C sequestration and, thus, climate change mitigation.


2008 ◽  
Vol 32 (3) ◽  
pp. 1253-1260 ◽  
Author(s):  
Fabiano de Carvalho Balieiro ◽  
Marcos Gervasio Pereira ◽  
Bruno José Rodrigues Alves ◽  
Alexander Silva de Resende ◽  
Avílio Antonio Franco

In spite of the normally low content of organic matter found in sandy soils, it is responsible for almost the totality of cation exchange capacity (CEC), water storage and availability of plant nutrients. It is therefore important to evaluate the impact of alternative forest exploitation on the improvement of soil C and N accumulation on these soils. This study compared pure and mixed plantations of Eucalyptus grandis and Pseudosamanea guachapele, a N2-fixing leguminous tree, in relation to their effects on soil C and N stocks. The studied Planosol area had formerly been covered by Panicum maximum pasture for at least ten years without any fertilizer addition. To estimate C and N contents, the soil was sampled (at depths of 0-2.5; 2.5-5.0; 5.0-7.5; 7.5-10.0; 10.0-20.0 and 20.0-40.0 cm), in pure and mixed five-year-old tree plantations, as well as on adjacent pasture. The natural abundance 13C technique was used to estimate the contribution of the soil organic C originated from the trees in the 0-10 cm soil layer. Soil C and N stocks under mixed plantation were 23.83 and 1.74 Mg ha-1, respectively. Under guachapele, eucalyptus and pasture areas C stocks were 14.20, 17.19 and 24.24 Mg ha-1, respectively. For these same treatments, total N contents were 0.83; 0.99 and 1.71 Mg ha-1, respectively. Up to 40 % of the soil organic C in the mixed plantation was estimated to be derived from trees, while in pure eucalyptus and guachapele plantations these same estimates were only 19 and 27 %, respectively. Our results revealed the benefits of intercropped leguminous trees in eucalyptus plantations on soil C and N stocks.


2005 ◽  
Vol 85 (Special Issue) ◽  
pp. 481-489 ◽  
Author(s):  
K. R. Tate ◽  
R. H. Wilde ◽  
D. J. Giltrap ◽  
W. T. Baisden ◽  
S. Saggar ◽  
...  

An IPCC-based Carbon Monitoring System (CMS) was developed to monitor soil organic C stocks and flows to assist New Zealand to achieve its CO2 emissions reduction target under the Kyoto Protocol. Geo-referenced soil C data from 1158 sites (0.3 m depth) were used to assign steady-state soil C stocks to various combinations of soil class, climate, and land use. Overall, CMS soil C stock estimates are consistent with detailed, stratified soil C measurements at specific sites and over larger regions. Soil C changes accompanying land-use changes were quantified using a national set of land-use effects (LUEs). These were derived using a General Linear Model to include the effects of numeric predictors (e.g., slope angle). Major uncertainties a rise from estimates of changes in the areas involved, the assumption that soil C is at steady state for all land-cover types, and lack of soil C data for some LUEs. Total national soil organic C stocks estimated using the LUEs for 0–0.1, 0.1–0.3, and 0.3–1 m depths were 1300 ± 20, 1590 ± 30, and 1750 ± 70 Tg, respectively. Most soil C is stored in grazing lands (1480 ± 60 Tg to 0.3 m depth), which appear to be at or near steady state; their conversion to exotic forests and shrubland contributed most to the predicted national soil C loss of 0.6 ± 0.2 Tg C yr-1 during 1990–2000. Predicted and measured soil C changes for the grazing-forestry conversion agreed closely. Other uncertainties in our current soil CMS include: spatially integrated annual changes in soil C for the major land-use changes, lack of soil C change estimates below 0.3 m, C losses from erosion, the contribution of agricultural management of organic soils, and a possible interaction between land use and our soil-climate classification. Our approach could be adapted for use by other countries with land-use-change issues that differ from those in the IPCC default methodology. Key words: Soil organic carbon, land-use change, stocks, flows, measurement, modelling, IPCC


2016 ◽  
Vol 13 (15) ◽  
pp. 4481-4489 ◽  
Author(s):  
Zhenke Zhu ◽  
Guanjun Zeng ◽  
Tida Ge ◽  
Yajun Hu ◽  
Chengli Tong ◽  
...  

Abstract. The input of recently photosynthesized C has significant implications on soil organic C sequestration, and in paddy soils, both plants and soil microbes contribute to the overall C input. In the present study, we investigated the fate and priming effect of organic C from different sources by conducting a 300-day incubation study with four different 13C-labelled substrates: rice shoots (shoot-C), rice roots (root-C), rice rhizodeposits (rhizo-C), and microbe-assimilated C (micro-C). The efflux of both 13CO2 and 13CH4 indicated that the mineralization of C in shoot-C-, root-C-, rhizo-C-, and micro-C-treated soils rapidly increased at the beginning of the incubation and decreased gradually afterwards. The highest cumulative C mineralization was observed in root-C-treated soil (45.4 %), followed by shoot-C- (31.9 %), rhizo-C- (7.90 %), and micro-C-treated (7.70 %) soils, which corresponded with mean residence times of 39.5, 50.3, 66.2, and 195 days, respectively. Shoot and root addition increased C emission from native soil organic carbon (SOC), up to 11.4 and 2.3 times higher than that of the control soil by day 20, and decreased thereafter. Throughout the incubation period, the priming effect of shoot-C on CO2 and CH4 emission was strongly positive; however, root-C did not exhibit a significant positive priming effect. Although the total C contents of rhizo-C- (1.89 %) and micro-C-treated soils (1.90 %) were higher than those of untreated soil (1.81 %), no significant differences in cumulative C emissions were observed. Given that about 0.3 and 0.1 % of the cumulative C emission were derived from labelled rhizo-C and micro-C, we concluded that the soil organic C-derived emissions were lower in rhizo-C- and micro-C-treated soils than in untreated soil. This indicates that rhizodeposits and microbe-assimilated C could be used to reduce the mineralization of native SOC and to effectively improve soil C sequestration. The contrasting behaviour of the different photosynthesized C substrates suggests that recycling rice roots in paddies is more beneficial than recycling shoots and demonstrates the importance of increasing rhizodeposits and microbe-assimilated C in paddy soils via nutrient management.


Sign in / Sign up

Export Citation Format

Share Document