fungal abundance
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 71)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yuan-Yuan Li ◽  
Margaux Boeraeve ◽  
Yu-Hsiu Cho ◽  
Hans Jacquemyn ◽  
Yung-I Lee

Mycorrhizal associations are essential for orchid germination and seedling establishment, and thus may constrain the distribution and abundance of orchids under natural conditions. Previous studies have shown that germination and seedling establishment in several orchids often decline with increasing distance from adult plants, resulting in non-random spatial patterns of seedling establishment. In contrast, individuals of the fully mycoheterotrophic orchid Gastrodia confusoides often tend to have random aboveground spatial patterns of distribution within bamboo forests. Since G. confusoides is parasitic on litter-decaying fungi, its random spatial patterns of distribution may be due to highly scattered patterns of litter-decaying fungi within bamboo forests. To test this hypothesis, we first identified the main mycorrhizal fungi associating with developing seeds and adult plants at a bamboo forest site in Taiwan using Miseq high-throughput DNA sequencing. Next, we combined seed germination experiments with quantitative PCR (qPCR) analyses to investigate to what extent the abundance of mycorrhizal fungi affected spatial patterns of seed germination. Our results show that seed germination and subsequent growth to an adult stage in G. confusoides required a distinct switch in mycorrhizal partners, in which protocorms associated with a single Mycena OTU, while adults mainly associated with an OTU from the genus Gymnopus. A strong, positive relationship was observed between germination and Mycena abundance in the litter, but not between germination and Gymnopus abundance. Fungal abundance was not significantly related to the distance from the adult plants, and consequently germination was also not significantly related to the distance from adult plants. Our results provide the first evidence that the abundance of litter-decaying fungi varies randomly within the bamboo forest and independently from G. confusoides adults.


2022 ◽  
Author(s):  
Corey Robert Schultz ◽  
Kamaya Brantley ◽  
Jason G Wallace

Abstract Growth-promoting endophytes have great potential to boost crop production and sustainability. There is, however, a lack of research on how differences in the plant host affect an endophyte’s ability to promote growth. We set out to quantify how different maize genotypes respond to specific growth-promoting endophytes. We inoculated genetically diverse maize lines with three different known beneficial endophytes: Herbaspirillum seropedicae (a gram-negative bacteria), Burkholderia WP9 (a gram-negative bacteria), and Serendipita vermifera Subsp. bescii (a Basidiomycota fungus). Maize seedlings were grown for 3 weeks under controlled conditions in the greenhouse and assessed for various growth promotion phenotypes. We found Herbaspirillum seropedicae to increase chlorophyll content, plant height, root length, and root volume significantly in different maize genotypes, while Burkholderia WP9 did not significantly promote growth in any lines under these conditions. Serendipita bescii significantly increased root and shoot mass for 4 maize genotypes, and growth promotion correlated with measured fungal abundance. Although plant genetic variation by itself had a strong effect on phenotype, its interaction with the different endophytes was weak, and the endophytes rarely produced consistent effects across different genotypes. This genome-by-genome interaction indicates that the relationship between a plant host and beneficial endophytes is complex, and it may partly explain why many microbe-based growth stimulants fail to translate from laboratory settings to the field. Detangling these interactions will provide a ripe area for future studies to understand how to best harness beneficial endophytes for agriculture.


2022 ◽  
Vol 8 (1) ◽  
pp. 65
Author(s):  
Giulio Barone ◽  
Cinzia Corinaldesi ◽  
Eugenio Rastelli ◽  
Michael Tangherlini ◽  
Stefano Varrella ◽  
...  

Fungi are a ubiquitous component of marine systems, but their quantitative relevance, biodiversity and ecological role in benthic deep-sea ecosystems remain largely unexplored. In this study, we investigated fungal abundance, diversity and assemblage composition in two benthic deep-sea sites of the Ross Sea (Southern Ocean, Antarctica), characterized by different environmental conditions (i.e., temperature, salinity, trophic availability). Our results indicate that fungal abundance (estimated as the number of 18S rDNA copies g−1) varied by almost one order of magnitude between the two benthic sites, consistently with changes in sediment characteristics and trophic availability. The highest fungal richness (in terms of Amplicon Sequence Variants−ASVs) was encountered in the sediments characterized by the highest organic matter content, indicating potential control of trophic availability on fungal diversity. The composition of fungal assemblages was highly diverse between sites and within each site (similarity less than 10%), suggesting that differences in environmental and ecological characteristics occurring even at a small spatial scale can promote high turnover diversity. Overall, this study provides new insights on the factors influencing the abundance and diversity of benthic deep-sea fungi inhabiting the Ross Sea, and also paves the way for a better understanding of the potential responses of benthic deep-sea fungi inhabiting Antarctic ecosystems in light of current and future climate changes.


2021 ◽  
Vol 3 (4) ◽  
pp. 110-117
Author(s):  
Rachel Enechojo Oijagbe ◽  
Solomon Oyenye Nkwor ◽  
Hakeem Olalekan Shittu

In this study, the effect of iron oxide nanoparticles on soil rhizospheric microbial communities of tomato was investigated. Iron oxide nanoparticles were biologically synthesized using plant extract from Azadirachta indica, and characterized using a UV-VIS spectrophotometer. Varying concentrations (25, 50, 75, or 100 %) of biosynthesized iron oxide nanoparticles or precursor solution was rhizoinjected into soils in which tomato plants were grown. Plate count method was used to analyse population size and community structure of test subjects. Quantitative analysis of the bacterial and fungal community was determined and diversity indicies were calculated. The results obtained from the analysis revealed that the addition of iron oxide nanoparticles to the soil changed bacterial and fungal community with respect to the control. Also, the bacterial and fungal abundance were changed. Some tolerant microorganisms such as Micrococcus, Stapylococcus, Aspergillus, Trichoderma and Penicillium could withstand high concentrations of iron oxide nanoparticles. Shannon diversity indices showed that there was difference in the diverisity of each concentration of iron oxide nanoparticles for both fungal and bacterial communties. The study's findings showed that high concentration of iron oxide nanoparticles in the soil had adverse effect on both the tomato and the microorganisms associated with the root of the tomato. Further study needs to be conducted to ascertain the magnitude of impact iron oxide nanoparticles will have on plants and rhizosphere microbiome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sara Windholtz ◽  
Emmanuel Vinsonneau ◽  
Laura Farris ◽  
Cécile Thibon ◽  
Isabelle Masneuf-Pomarède

Changes are currently being made to winemaking processes to reduce chemical inputs [particularly sulfur dioxide (SO2)] and adapt to consumer demand. In this study, yeast growth and fungal diversity were investigated in merlot during the prefermentary stages of a winemaking process without addition of SO2. Different factors were considered, in a two-year study: vintage, maturity level and bioprotection by the adding yeast as an alternative to SO2. The population of the target species was monitored by quantitative-PCR, and yeast and filamentous fungi diversity was determined by 18S rDNA metabarcoding. A gradual decrease of the α-diversity during the maceration process was highlighted. Maturity level played a significant role in yeast and fungal abundance, which was lower at advanced maturity, while vintage had a strong impact on Hanseniaspora spp. population level and abundance. The presence of SO2 altered the abundance of yeast and filamentous fungi, but not their nature. The absence of sulfiting led to an unexpected reduction in diversity compared to the presence of SO2, which might result from the occupation of the niche by certain dominant species, namely Hanseniaspora spp. Inoculation of the grape juice with non-Saccharomyces yeast resulted in a decrease in the abundance of filamentous fungi generally associated with a decline in grape must quality. Lower abundance and niche occupation by bioprotection agents were observed at the overripened stage, thus suggesting that doses applied should be reconsidered at advanced maturity. Our study confirmed the bioprotective role of Metschnikowia pulcherrima and Torulaspora delbrueckii in a context of vinification without sulfites.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianjun Wang ◽  
Xuekai Wei ◽  
Taixiang Chen ◽  
James F. White ◽  
Guiqin Zhao ◽  
...  

Many species of seed-borne fungi are closely allied with seed varieties and growing regions, including many seed-borne pathogens, but their species richness and distribution remain largely unknown. This study was conducted to explore the seed-borne fungal composition, abundance and diversity in Avena sativa (B7) and A. nuda (B2) seed samples collected from Baicheng (BB), Dingxi (DB) and Haibei (HB) city, using Illumina sequencing techniques. Our results show that a total of 543,707 sequences were obtained and these were assigned to 244 operational taxonomic units (OTUs) with 97% similarity. Oat varieties and growing locations had a significant difference on seed-borne fungal diversity. HB had a higher fungal diversity than BB and DB, Shannon diversity and ACE richness index of fungal in HB seeds was significantly higher than in BB and DB (P < 0.05). In different varieties, both taxon richness and evenness of B7 seeds was significantly higher than B2 (P < 0.05). A total of 4 fungal phyla and 26 fungal genera were detected. Ascomycota was the dominant phylum and Alternaria sp. was the most abundant genus in B2 and B7 oat seeds from different regions. Mycosphaerella sp. had a higher abundance in HB7 and DB7, respectively, Epicoccum sp. had a higher abundance in HB7 and BB7. The results of alpha and beta diversity analysis revealed the presence of different effects in fungal communities of different varieties and regions of oat, especially in seed pathogenic fungi distribution. Structural equation modeling also explained oat varieties and growing regions have significant influences on seed-borne fungal abundance, composition and diversity. This study demonstrated that the differences of varieties and regions are the main factors resulting in the changes of seed-borne fungal community of oat.


2021 ◽  
Author(s):  
William D. Orsi ◽  
Aurèle Vuillemin ◽  
Ömer K. Coskun ◽  
Paula Rodriguez ◽  
Yanik Oertel ◽  
...  

AbstractFungi are ubiquitous in the ocean and hypothesized to be important members of marine ecosystems, but their roles in the marine carbon cycle are poorly understood. Here, we use 13C DNA stable isotope probing coupled with phylogenetic analyses to investigate carbon assimilation within diverse communities of planktonic and benthic fungi in the Benguela Upwelling System (Namibia). Across the redox stratified water column and in the underlying sediments, assimilation of 13C-labeled carbon from diatom extracellular polymeric substances (13C-dEPS) by fungi correlated with the expression of fungal genes encoding carbohydrate-active enzymes. Phylogenetic analysis of genes from 13C-labeled metagenomes revealed saprotrophic lineages related to the facultative yeast Malassezia were the main fungal foragers of pelagic dEPS. In contrast, fungi living in the underlying sulfidic sediments assimilated more 13C-labeled carbon from chemosynthetic bacteria compared to dEPS. This coincided with a unique seafloor fungal community and dissolved organic matter composition compared to the water column, and a 100-fold increased fungal abundance within the subseafloor sulfide-nitrate transition zone. The subseafloor fungi feeding on 13C-labeled chemolithoautotrophs under anoxic conditions were affiliated with Chytridiomycota and Mucoromycota that encode cellulolytic and proteolytic enzymes, revealing polysaccharide and protein-degrading fungi that can anaerobically decompose chemosynthetic necromass. These subseafloor fungi, therefore, appear to be specialized in organic matter that is produced in the sediments. Our findings reveal that the phylogenetic diversity of fungi across redox stratified marine ecosystems translates into functionally relevant mechanisms helping to structure carbon flow from primary producers in marine microbiomes from the surface ocean to the subseafloor.


2021 ◽  
Author(s):  
Kirk E. Anderson ◽  
Vincent A. Ricigliano ◽  
Duan Copeland ◽  
Brendon M. Mott ◽  
Patrick Maes

Abstract Honey bees are a model for host-microbial interactions with experimental designs evolving towards conventionalized worker bees. Research on gut microbiome transmission and assembly has examined only a fraction of factors associated with the colony and hive environment. Here we studied the effects of diet and social isolation on tissue-specific bacterial and fungal colonization of the midgut and two key hindgut regions. We found that both treatment factors significantly influenced early hindgut colonization explaining similar proportions of microbiome variation. In agreement with previous work, social interaction with older workers was unnecessary for core hindgut bacterial transmission. Exposure to natural eclosion and fresh stored pollen resulted in gut bacterial communities that were taxonomically and structurally equivalent to those produced in the natural colony setting. Stressed diets of no pollen or autoclaved pollen in social isolation resulted in decreased fungal abundance and bacterial diversity, and atypical microbiome structure and tissue-specific variation of functionally important core bacteria. Without exposure to the active hive environment, the abundance and strain diversity of keystone ileum species Gilliamella apicola was markedly reduced. These changes were associated with significantly larger ileum microbiotas suggesting that extended exposure to the active hive environment plays an antibiotic role in hindgut microbiome establishment. We conclude that core hindgut microbiome transmission is facultative horizontal with 5 of 6 core hindgut species readily acquired from the built hive structure and natural diet. Our findings contribute novel insights into factors influencing assembly and maintenance of honey bee gut microbiota and facilitate future experimental designs.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Zhiguo Hao ◽  
Yunfei Zhao ◽  
Xia Wang ◽  
Jinhong Wu ◽  
Silong Jiang ◽  
...  

AbstractMicrobial moribunds after microbial biomass turnover (microbial residues) contribute to the formation and stabilization of soil carbon pools; however, the factors influencing their accumulation on a global scale remain unclear. Here, we synthesized data for 268 amino sugar concentrations (biomarkers of microbial residues) in grassland and forest ecosystems for meta-analysis. We found that soil organic carbon, soil carbon-to-nitrogen ratio, and aridity index were key factors that predicted microbial residual carbon accumulation. Threshold aridity index and soil carbon-to-nitrogen ratios were identified (~0.768 and ~9.583, respectively), above which microbial residues decreased sharply. The aridity index threshold was associated with the humid climate range. We suggest that the soil carbon-to-nitrogen ratio threshold may coincide with a sharp decrease in fungal abundance. Although dominant factors vary between ecosystem and climate zone, with soil organic carbon and aridity index being important throughout, our findings suggest that climate and soil environment may govern microbial residue accumulation.


Sign in / Sign up

Export Citation Format

Share Document