Estimating the best spatial resolution of remotely sensed surface soil moisture based on their uncertainty 

Author(s):  
Theresa C. van Hateren ◽  
Marco Chini ◽  
Patrick Matgen ◽  
Luca Pulvirenti ◽  
Nazzareno Pierdicca ◽  
...  

<p>Validation of remotely sensed soil moisture is a well-known issue. Reference data with the correct spatial and temporal resolution on large scales are sparse and lack spatial representativeness. Moreover, due to the heterogeneity of soil moisture in both space and time, even reference data cannot be considered to be “ground truth”. As such, uncertainties are difficult to quantify. Additionally, in remotely sensed soil moisture there are trade-offs between spatial resolution and temporal resolution, resolution and accuracy, and resolution and computing time. Here, we try to identify the best spatial resolution for Sentinel-1 based soil moisture estimation, considering the trade-off between product resolution and accuracy. We use the uncertainty  of the soil moisture estimate as a guide parameter, and focus on how product accuracy depends on factors as soil wetness, and characteristics of the vegetated canopy.  To this end, we compare Sentinel-1 soil moisture estimates to both in situ data and global reference data sets with a lower spatial resolution. Remotely sensed surface soil moisture data were obtained by applying the MULESME algorithm  (Pulvirenti et al., 2018) on Sentinel-1 data throughout 2020. An extensive field campaign was performed, where TDR data and volumetric soil samples were gathered. A nearby setup of permanent soil moisture probes additionally provided continuous measurements of soil moisture at different depths, from 10 to 60 centimetres. Global datasets were obtained from the SMOS satellite constellation, GLDAS, MERRA-2 and ESA CCI.</p><p>Pulvirenti, L., Squicciarino, G., Cenci, L., Boni, G., Pierdicca, N., Chini, M., Versace, P. & Campanella, P. (2018). A surface soil moisture mapping service at national (Italian) scale based on Sentinel-1 data. <em>Environmental Modelling & Software</em>, <em>102</em>, 13-28.</p>

2019 ◽  
Vol 98 ◽  
pp. 06005
Author(s):  
Otto Corrêa Rotunno Filho ◽  
Kary de Paiva ◽  
Vitor Paiva Alcoforado Rebello ◽  
Afonso Augusto Magalhães de Araujo

Soil moisture is a key environmental variable for developing a coupled hydrological and biogeochemical modeling approach. It is recognized that a relationship does exist between water stress and emission of volatile organic compounds (VOCs) in forested areas, which may have negative effect on human health and ecosystems. Therefore it is necessary to achieve a better understanding of the land phase of the hydrological cycle, namely soil moisture estimation, which modulates surface energy balance and consequently vegetation cover patterns. This work focuses on a new methodological approach to evaluate the spatial variability of surface soil moisture at the field scale using the Bayesian kriging model jointly with TDR measurements and Landsat 8-TM remotely sensed image. The analysis looked for quantifying different deterministic sources of variability, measurement errors and also components not well understood of variability. In particular, the spatial distribution of in situ measurements and digital image data in a scene provided by remote sensing technology is addressed through a geostatistical framework. This technique is explored as alternative to the regression techniques currently used for modeling soil moisture mapping. Tests conducted on an extensively sampled pasture field showed significant improvement, which suggests that the methodological approach could be applied at the watershed scale for validating remotely sensed datasets.


2021 ◽  
Author(s):  
Anna Balenzano ◽  
Giuseppe Satalino ◽  
Francesco Lovergine ◽  
Davide Palmisano ◽  
Francesco Mattia ◽  
...  

<p>One of the limitations of presently available Synthetic Aperture Radar (SAR) surface soil moisture (SSM) products is their moderated temporal resolution (e.g., 3-4 days) that is non optimal for several applications, as most user requirements point to a temporal resolution of 1-2 days or less. A possible path to tackle this issue is to coordinate multi-mission SAR acquisitions with a view to the future Copernicus Sentinel-1 (C&D and Next Generation) and L-band Radar Observation System for Europe (ROSE-L).</p><p>In this respect, the recent agreement between the Japanese (JAXA) and European (ESA) Space Agencies on the use of SAR Satellites in Earth Science and Applications provides a framework to develop and validate multi-frequency and multi-platform SAR SSM products. In 2019 and 2020, to support insights on the interoperability between C- and L-band SAR observations for SSM retrieval, Sentinel-1 and ALOS-2 systematic acquisitions over the TERENO (Terrestrial Environmental Observatories) Selhausen (Germany) and Apulian Tavoliere (Italy) cal/val sites were gathered. Both sites are well documented and equipped with hydrologic networks.</p><p>The objective of this study is to investigate the integration of multi-frequency SAR measurements for a consistent and harmonized SSM retrieval throughout the error characterization of a combined C- and L-band SSM product. To this scope, time series of Sentinel-1 IW and ALOS-2 FBD data acquired over the two sites will be analysed. The short time change detection (STCD) algorithm, developed, implemented and recently assessed on Sentinel-1 data [e.g., Balenzano et al., 2020; Mattia et al., 2020], will be tailored to the ALOS-2 data. Then, the time series of SAR SSM maps from each SAR system will be derived separately and aggregated in an interleaved SSM product. Furthermore, it will be compared against in situ SSM data systematically acquired by the ground stations deployed at both sites. The study will assess the interleaved SSM product and evaluate the homogeneous quality of C- and L-band SAR SSM maps.</p><p> </p><p> </p><p>References</p><p>Balenzano. A., et al., “Sentinel-1 soil moisture at 1km resolution: a validation study”, submitted to Remote Sensing of Environment (2020).</p><p>Mattia, F., A. Balenzano, G. Satalino, F. Lovergine, A. Loew, et al., “ESA SEOM Land project on Exploitation of Sentinel-1 for Surface Soil Moisture Retrieval at High Resolution,” final report, contract number 4000118762/16/I-NB, 2020.</p>


2019 ◽  
Vol 233 ◽  
pp. 111364 ◽  
Author(s):  
Di Long ◽  
Liangliang Bai ◽  
La Yan ◽  
Caijin Zhang ◽  
Wenting Yang ◽  
...  

2020 ◽  
Author(s):  
Nadia Ouaadi ◽  
Lionel Jarlan ◽  
Jamal Ezzahar ◽  
Saïd Khabba ◽  
Mehrez Zribi ◽  
...  

<p>High spatial and temporal resolution products of Sentinel-1 are used for surface soil moisture (SSM) mapping over wheat fields in semi-arid areas. Within these regions, monitoring the water-use is a critical aspect for optimizing the management of the limited water resources via irrigation monitoring. SSM is one of the principal quantities affecting microwave remote sensing. This sensitivity has been exploited to estimate SSM from radar data, which has the advantages of providing data independent of illumination and weather conditions. In addition, with the use of Sentinel-1 products, the spatial and temporal resolution is greatly improved. Within this context, the main objective of this work is estimate SSM over wheat fields using an approach based on the use of C-band Sentinel-1 radar data only. Over the study site, field measurement are collected during 2016-2017 and 2017-2018 growing seasons over two fields of winter wheat with drip irrigation located in the Haouz plain in the center of Morocco. Data of other sites in Morocco and Tunisia are taken for validation purposes. The validation database contains a total number of 20 plots divided between irrigated and rainfed wheat plots. Two different information extracted from Sentinel-1 products are used: the backscattering coefficient and the interferometric coherence. A total number of 408 GRD and 419 SLC images were processed for computing the backscattering coefficient and the interferometric coherence, respectively. The analysis of Sentinel-1 time series over the study site show that coherence is sensitive to the development of wheat, while the backscatter coefficient is widely linked to changes in surface soil moisture. Later on, the Water Cloud Model coupled with the Oh et al, 1992 model were used for better understand the backscattering mechanism of wheat canopies. The coupled model is calibrated and validated over the study site and it proved to goodly enough reproduce the Sentinel-1 backscatter with RMSE ranging from 1.5 to 2.52 dB for VV and VH using biomass as a descriptor of wheat. On the other side, the analysis show that coherence is well correlated to biomass. Thus, the calibrated model is used in an inversion algorithm to retrieve SSM using the Sentinel-1 backscatter and coherence as inputs. The results of inversion show that the proposed new approach is able to retrieve the surface soil moisture at 35.2° for VV, with R=0.82, RMSE=0.05m<sup>3/</sup>m<sup>3 </sup>and no bias. Using the validation database of Morocco and Tunisia, R is always greater than 0.7 and RMSE and bias are less than 0.008 m<sup>3/</sup>m<sup>3</sup> and 0.03 m<sup>3/</sup>m<sup>3</sup>, respectively even that the incidence angle is higher (40°). In order to assess its quality, the approach is compared to four SSM retrieval methods that use radar and optical data in empirical and semi-empirical approaches. Results indicate that the proposed approach shows an improvement of SSM retrieval between 17% and 42% compared to other methods. Finally, the validated new approach is used for SSM mapping, with a spatial resolution of 10*10 m, over irrigated perimeters of wheat in Morocco.</p>


2020 ◽  
Author(s):  
Sarah Schönbrodt-Stitt ◽  
Paolo Nasta ◽  
Nima Ahmadian ◽  
Markus Kurtenbach ◽  
Christopher Conrad ◽  
...  

<p>Mapping near-surface soil moisture (<em>θ</em>) is of tremendous relevance for a broad range of environment-related disciplines and meteorological, ecological, hydrological and agricultural applications. Globally available products offer the opportunity to address <em>θ</em> in large-scale modelling with coarse spatial resolution such as at the landscape level. However, <em>θ</em> estimation at higher spatial resolution is of vital importance for many small-scale applications. Therefore, we focus our study on a small-scale catchment (MFC2) belonging to the “Alento” hydrological observatory, located in southern Italy (Campania Region). The goal of this study is to develop new machine-learning approaches to estimate high grid-resolution (about 17 m cell size) <em>θ</em> maps from mainly backscatter measurements retrieved from C-band Synthetic Aperture Radar (SAR) based on Sentinel-1 (S1) images and from gridded terrain attributes. Thus, a workflow comprising a total of 48 SAR-based <em>θ</em> patterns estimated for 24 satellite overpass dates (revisit time of 6 days) each with ascendant and descendent orbits will be presented. To enable for the mapping, SAR-based <em>θ</em> data was calibrated with in-situ measurements carried out with a portable device during eight measurement campaigns at time of satellite overpasses (four overpass days in total with each ascendant and descendent satellite overpasses per day in November 2018). After the calibration procedure, data validation was executed from November 10, 2018 till March 28, 2019 by using two stationary sensors monitoring <em>θ</em> at high-temporal (1-min recording time). The specific sensor locations reflected two contrasting field conditions, one bare soil plot (frequently kept clear, without disturbance of vegetation cover) and one non-bare soil plot (real-world condition). Point-scale ground observations of <em>θ</em> were compared to pixel-scale (17 m × 17 m), SAR-based <em>θ</em> estimated for those pixels corresponding to the specific positions of the stationary sensors. Mapping performance was estimated through the root mean squared error (RMSE). For a short-term time series of <em>θ</em> (Nov 2018) integrating 136 in situ, sensor-based <em>θ</em> (<em>θ</em><sub>insitu</sub>) and 74 gravimetric-based <em>θ</em> (<em>θ</em><sub>gravimetric</sub>) measurements during a total of eight S1 overpasses, mapping performance already proved to be satisfactory with RMSE=0.039 m³m<sup>-</sup>³ and R²=0.92, respectively with RMSE=0.041 m³m<sup>-</sup>³ and R²=0.91. First results further reveal that estimated satellite-based <em>θ</em> patterns respond to the evolution of rainfall. With our workflow developed and results, we intend to contribute to improved environmental risk assessment by assimilating the results into hydrological models (e.g., HydroGeoSphere), and to support future studies on combined ground-based and SAR-based <em>θ</em> retrieval for forested land (future missions operating at larger wavelengths e.g. NISARL-band, Biomass P-band sensors).</p>


2017 ◽  
Vol 31 (15) ◽  
pp. 2764-2780 ◽  
Author(s):  
Dipangkar Kundu ◽  
R. Willem Vervoort ◽  
Floris F. van Ogtrop

2018 ◽  
Vol 19 (1) ◽  
pp. 183-200 ◽  
Author(s):  
Y. Malbéteau ◽  
O. Merlin ◽  
G. Balsamo ◽  
S. Er-Raki ◽  
S. Khabba ◽  
...  

Abstract High spatial and temporal resolution surface soil moisture is required for most hydrological and agricultural applications. The recently developed Disaggregation based on Physical and Theoretical Scale Change (DisPATCh) algorithm provides 1-km-resolution surface soil moisture by downscaling the 40-km Soil Moisture Ocean Salinity (SMOS) soil moisture using Moderate Resolution Imaging Spectroradiometer (MODIS) data. However, the temporal resolution of DisPATCh data is constrained by the temporal resolution of SMOS (a global coverage every 3 days) and further limited by gaps in MODIS images due to cloud cover. This paper proposes an approach to overcome these limitations based on the assimilation of the 1-km-resolution DisPATCh data into a simple dynamic soil model forced by (inaccurate) precipitation data. The performance of the approach was assessed using ground measurements of surface soil moisture in the Yanco area in Australia and the Tensift-Haouz region in Morocco during 2014. It was found that the analyzed daily 1-km-resolution surface soil moisture compared slightly better to in situ data for all sites than the original disaggregated soil moisture products. Over the entire year, assimilation increased the correlation coefficient between estimated soil moisture and ground measurements from 0.53 to 0.70, whereas the mean unbiased RMSE (ubRMSE) slightly decreased from 0.07 to 0.06 m3 m−3 compared to the open-loop force–restore model. The proposed assimilation scheme has significant potential for large-scale applications over semiarid areas, since the method is based on data available at the global scale together with a parsimonious land surface model.


2013 ◽  
Vol 10 (8) ◽  
pp. 11241-11291 ◽  
Author(s):  
I. Gouttevin ◽  
A. Bartsch ◽  
G. Krinner ◽  
V. Naeimi

Abstract. In this study, the combined surface status and surface soil moisture products retrieved by the ASCAT sensor within the ESA-DUE Permafrost project are compared to the hydrological outputs of the land surface model ORCHIDEE over Northern Eurasia. The objective is to derive broad conclusions as to the strengths and weaknesses of hydrological modelling and, to a minor extent, remote sensing of soil moisture over an area where data is rare and hydrological modelling is though crucial for climate and ecological applications. The spatial and temporal resolutions of the ASCAT products make them suitable for comparison with model outputs. Modelled and remotely-sensed surface frozen and unfrozen statuses agree reasonably well, which allows for a seasonal comparison between modelled and observed (liquid) surface soil moisture. The atmospheric forcing and the snow scheme of the land surface model are identified as causes of moderate model-to-data divergence in terms of surface status. For unfrozen soils, the modelled and remotely-sensed surface soil moisture signals are positively correlated over most of the study area. The correlation deteriorates in the North-Eastern Siberian regions, which is consistent with the lack of accurate model parameters and the scarcity of meteorological data. The model shows a reduced ability to capture the main seasonal dynamics and spatial patterns of observed surface soil moisture in Northern Eurasia, namely a characteristic spring surface moistening resulting from snow melt and flooding. We hypothesize that these weak performances mainly originate from the non-representation of flooding and surface ponding in the model. Further identified limitations proceed from the coarse treatment of the hydrological specificities of mountainous areas and spatial inaccuracies in the meteorological forcing in remote, North-Eastern Siberian areas. Investigations are currently underway to determine to which extent plausible inaccuracies in the satellite data could also contribute to the diagnosed model-to-data discrepancies.


Sign in / Sign up

Export Citation Format

Share Document