CO2 fracturing using the phase field approach for the brittle fracture

Author(s):  
Mostafa Mollaali ◽  
Vahid Ziaei-Rad ◽  
Yongxing Shen

<p>To simulate CO<sub>2</sub> fracturing under an isothermal condition, we propose a phase field model. We take advantage of the ability of the phase field approach to predict fracture initiation and branching, as well as to avoid tracking the fracture path. We model the CO<sub>2</sub> as a compressible fluid by modifying Darcy's law. In particular, we assume that the permeability is correlated to the value of the phase field by the exponential function. The dependence of the CO<sub>2</sub> density as a function of the pressure is captured by the Span-Wagner state equation. The computed pressure breakdown values show good agreement with analytical solutions and experimental results.</p>

2011 ◽  
Vol 415-417 ◽  
pp. 1482-1485
Author(s):  
Chuang Gao Huang ◽  
Ying Jun Gao ◽  
Li Lin Huang ◽  
Jun Long Tian

The second phase nucleation and precipitation around the edge dislocation are studied using phase-field method. A new free energy function is established. The simulation results are in good agreement with that of theory of dislocation and theory of non-uniform nucleation.


2021 ◽  
Vol 18 (2) ◽  
pp. 102-107
Author(s):  
Arunabha Mohan Roy

A short review on a thermodynamically consistent multiphase phase-field approach for virtual melting has been presented. The important outcomes of solid-solid phase transformations via intermediate melt have been discussed for HMX crystal. It is found out that two nanoscale material parameters and solid-melt barrier term in the phase-field model significantly affect the mechanism of PTs, induces nontrivial scale effects, and changes PTs behaviors at the nanoscale during virtual melting.


2016 ◽  
Vol 704 ◽  
pp. 241-250 ◽  
Author(s):  
Peter Holfelder ◽  
Jin Ming Lu ◽  
Christian Krempaszky ◽  
Ewald A. Werner

A Multi Phase Field model is proposed to describe the microstructure evolution induced by laser-material interaction in Selective Laser Melting (SLM). On the basis of the free enthalpy, the nucleation and growth processes occurring during the relevant phase transformations are explicitly taken into account. Within this contribution, the focus is laid on the SLM processing of the titanium alloy Ti-6Al-4V with special emphasis on the transition between β-titanium and melt. The results are discussed and compared to those of more conventional modelling approaches.


2019 ◽  
Vol 31 (12) ◽  
pp. 125901
Author(s):  
Jacob L Bair ◽  
David G Abrecht ◽  
Dallas D Reilly ◽  
Matthew T Athon ◽  
Jordan F Corbey

2015 ◽  
Vol 817 ◽  
pp. 14-20
Author(s):  
Hai Feng Wang ◽  
Cun Lai ◽  
Xiao Zhang ◽  
Kuang Wang ◽  
Feng Liu

Since the growth velocity can be comparable with or even larger than the solute diffusion velocity in the bulk phases, modeling of rapid solidification with non-equilibrium solute diffusion becomes quite an important topic. In this paper, an effective mobility approach was proposed to derive the current phase field model (PFM). In contrast with the previous PFMs that were derived by the so-called kinetic energy approach, diffusionless solidification happens not only in the bulk phases but also inside the interface when the growth velocity is equal to the solute diffusion velocity in liquid. A good agreement between the model predictions and experimental results is obtained for rapid solidification of Si-9at.%As alloy.


2011 ◽  
Vol 399-401 ◽  
pp. 1785-1788
Author(s):  
Ying Jun Gao ◽  
Zhi Rong Luo

A multi-state free energy function for deformation alloy with storage energy is proposed to simulate the microstructure evolution of static recrystallization with phase field model. The grain growth and grain size distribution during recrystallization are discussed. The simulation results are in good agreement with other theoretical or experimental results.


Soft Matter ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. 366-374 ◽  
Author(s):  
Yucen Han ◽  
Zirui Xu ◽  
An-Chang Shi ◽  
Lei Zhang

A phase field model with two phase fields, representing the concentration and the head–tail separation of amphiphilic molecules, respectively, has been constructed using an extension of the Ohta–Kawasaki model (Macromolecules, 1986, 19, 2621–2632).


Author(s):  
Kais Ammar ◽  
Benoît Appolaire ◽  
Georges Cailletaud ◽  
Samuel Forest

A general constitutive framework is proposed to incorporate linear and nonlinear mechanical behaviour laws into a standard phase field model. In the diffuse interface region where both phases coexist, two mixture rules for strain and stress are introduced, which are based on the Voigt/Taylor and Reuss/Sachs well-known homogenization schemes and compared to the commonly used mixture rules in phase field models. Finite element calculations have been performed considering an elastoplastic precipitate growing in an elastic matrix in order to investigate the plastic accommodation processes.


Sign in / Sign up

Export Citation Format

Share Document