Modelling the Covid-19 impact on CO2 concentrations in Germany

Author(s):  
Andrea K. Kaiser-Weiss ◽  
Buhalqem Mamtimin ◽  
Franziska Roth ◽  
Anusha Sunkisala ◽  
Jochen Förstner

<p>The sharp decrease in emissions caused by the Corona crisis entails the question: where, when, and how strong impacts on observations can be expected? The <em>Icosahedral Nonhydrostatic </em>(ICON) model is online-coupled to the modules for <em>Aerosols and Reactive Trace gases </em>(ART). With the model system ICON-ART run at roughly 13km resolution we determine how CO<sub>2</sub> emission reductions in Germany relate to a reduction in CO<sub>2</sub> concentrations. This varies over several orders of magnitude, depending on the weather related atmospheric transport. We compare this with the emission reduction effect originating from outside Germany. In a case study, we identify locations and times, where either effect reaches a magnitude to be observable at the <em>Integrated Carbon Observation System (ICOS)</em> towers in Germany. In contrast, there are also weather situations, where both contributions (from inside/outside Germany) are negligible with respect to the background variability. Reducing background uncertainty, as foreseen in the CoCO2 project, will allow better disentangling of the national contribution in future. Here we focus on the height dependency of the modelled concentration change with respect to recent anthropogenic emissions. We draw conclusions on measurement and modelling capabilities essential for an integrated greenhouse gas monitoring system for Germany to detect anthropogenic emission reductions.</p>

2015 ◽  
Vol 8 (6) ◽  
pp. 1659-1676 ◽  
Author(s):  
D. Rieger ◽  
M. Bangert ◽  
I. Bischoff-Gauss ◽  
J. Förstner ◽  
K. Lundgren ◽  
...  

Abstract. We present the first stage of a new online-coupled global to regional-scale modeling framework for the simulation of the spatiotemporal evolution of aerosols and trace gases. The underlying meteorological model is the new nonhydrostatic model system ICON (ICOsahedral Nonhydrostatic) which allows a local grid refinement with two-way interactions between the grids. We develop the extension ART (Aerosol and Reactive Trace gases) with the goal of simulating interactions between trace substances and the state of the atmosphere. Within this paper, we present the basic equations and give an overview of the physical parameterizations as well as numerical methods we use. First applications of the new model system for trace gases, monodisperse particles and polydisperse particles are shown. The simulated distribution of two very short-lived substances (VSLS), bromoform (CHBr3) and dibromomethane (CH2Br2) reflecting the fast upward transport shows a good agreement with observations and previous model studies. Also, the shape of the simulated tropical profiles is well reproduced. As an example for the treatment of monodisperse particles we present the simulated ash plume of the Eyjafjallajökull eruption in April 2010. Here, a novel approach for the source function is applied. The pattern of the simulated distribution of volcanic ash particles shows a good agreement with previous studies. As an example for the treatment of a polydisperse aerosol, where number densities and mass concentrations are accounted for, we simulated the annual emissions of sea salt. We obtain a total emission flux of 26.0 Pg yr−1 and an emission flux of particles with diameter less than 10 μm of 7.36 Pg yr−1.


2015 ◽  
Vol 8 (1) ◽  
pp. 567-614
Author(s):  
D. Rieger ◽  
M. Bangert ◽  
I. Bischoff-Gauss ◽  
J. Förstner ◽  
K. Lundgren ◽  
...  

Abstract. We present the first stage of a new online-coupled global to regional scale modelling framework for the simulation of the spatiotemporal evolution of aerosols and trace gases. The underlying meteorological model is the new nonhydrostatic model system ICON (ICOsahedral Nonhydrostatic) which allows a local grid refinement with two-way interactions between the grids. We develop the extension ART (Aerosol and Reactive Trace gases) with the goal to simulate interactions between trace substances and the state of the atmosphere. Within this paper, we present the basic equations and give an overview of the physical parameterizations as well as numerical methods we use. First applications of the new model system for trace gases, monodisperse particles and polydisperse particles are shown. The simulated distribution of two very short-lived substances, Bromoform (CHBr3) and Dibrommethane (CH2Br2) reflecting the fast upward transport shows a good agreement with observations and previous model studies. Also, the shape of the simulated tropical profiles is well reproduced. As an example for the treatment of monodisperse particles we present the simulated ash plume of the Eyjafjallajökull eruption in April 2010. Here, a novel approach for the source function is applied. The pattern of the simulated distribution of volcanic ash particles shows an agreement with previous studies. As an example for the treatment of a polydisperse aerosol, where number densities and mass concentrations are accounted for, we simulated the annual emissions of sea salt. We obtain a total emission flux of 26.0 Pg yr−1 and an emission flux of particles with diameter less than 10 μm of 7.36 Pg yr−1.


2017 ◽  
Vol 71 (11) ◽  
pp. 778-778
Author(s):  
Céline Pascale ◽  
Daiana Leuenberger ◽  
Myriam Guillevic ◽  
Andreas Ackermann ◽  
Bernhard Niederhauser

2021 ◽  
pp. 128973
Author(s):  
Liting Zhang ◽  
Yongwen Yang ◽  
Qifen Li ◽  
Weijun Gao ◽  
Fanyue Qian ◽  
...  

2008 ◽  
Vol 72 (1) ◽  
pp. 515-519 ◽  
Author(s):  
E. Valsami-Jones ◽  
D. Berhanu ◽  
A. Dybowska ◽  
S. Misra ◽  
A. R. Boccaccini ◽  
...  

AbstractIn recent years it has become apparent that the novel properties of nanomaterials may predispose them to a hitherto unknown potential for toxicity. A number of recent toxicological studies of nanomaterials exist, but these appear to be fragmented and often contradictory. Such discrepancies may be, at least in part, due to poor description of the nanomaterial or incomplete characterization, including failure to recognise impurities, surface modifications or other important physicochemical aspects of the nanomaterial. Herew em ake a casef or the importance of good quality, well-characterized nanomaterials for future toxicological studies, combined with reliable synthesis protocols, and we present our efforts to generate such materials. The model system for which we present results is TiO2 nanoparticles, currently used in a variety of commercial products.


2021 ◽  
Author(s):  
Roland Potthast ◽  
Wolfgang Müller ◽  
Barbara Früh ◽  
Peter Korn ◽  
Susanne Brienen ◽  
...  

<p>ICON-seamless entwickelt ein neues Erdsystemmodell, als Grundlage für Wettervorhersage, saisonale und dekadische Klimavorhersagen, bis hin zu Klimaprojektionen. Dabei nutzen wir die Expertise, die ICON-NWV als zuverlässiges Modell für numerische Wettervorhersage (NWV) betreibt und pflegt sowie die Erfahrungen mit der ersten ICON-Erdsystemversion basierend auf der Physik der MPI-Atmosphäre ECHAM. Das Ziel ist, gemeinsame Komponenten für alle meteorologischen Zeitskalen nutzen zu können. Der erste Schritt entwickelt ein Modell für saisonale und dekadische Zeitskalen.</p> <p>ICON-seamless baut auf der Kopplung der Komponenten ICON-NWV (Atmosphäre) und ICON-O (Ozean) auf. Mit Hilfe des speziell entwickelten Kopplungs-Tools YAC können beide Komponenten Variablen austauschen, die für die Wechselwirkung zwischen Atmosphäre und Ozean wichtig sind. Auch die Parametrisierung von Meereis stellt einen wichtigen Baustein dar. Zur Wiedergabe eines geschlossenen hydrologischen Kreislaufs und um den Kohlenstoffkreislauf sauber darzustellen, wird ferner ein geeignetes Bodenmodell, ICON-L, an die Atmosphärenphysik von ICON-NWV gekoppelt. Zudem werden transiente Aerosolfelder, Treibhausgase, und Strahlungsantriebe neu in ICON-NWV eingelesen, um historische Zeiträume nachzuvollziehen. Parallel hierzu werden die ART Module (Aerosol and Reactive Trace gases), die eine dynamische Behandlung von Gasen und Aerosolen gestatten, an die modifizierte Modellphysik angepasst. Eine intensive Modelldiagnostik unterstützt das Tuning. Für die zukünftige Verwendung im Bereich der (Wetter- und) Klimavorhersagen wird parallel die gekoppelte Datenassimilation entwickelt.</p> <p>Wir geben einen Überblick über den aktuellen Stand der Entwicklung, der Experimente und potentieller Anwendungsbereiche.</p>


2013 ◽  
Vol 6 (4) ◽  
pp. 917-925 ◽  
Author(s):  
V. Duflot ◽  
D. Hurtmans ◽  
L. Clarisse ◽  
Y. R'honi ◽  
C. Vigouroux ◽  
...  

Abstract. Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing, we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S, 55° E) and Jungfraujoch (46° N, 8° E) in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI). A first order comparison with local ground-based Fourier transform infraRed (FTIR) measurements has been carried out allowing tests of seasonal consistency which is reasonably captured, except for HCN at Jungfraujoch. The IASI data shows a greater tendency to high C2H2 values. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values.


Sign in / Sign up

Export Citation Format

Share Document