A kinematic formalism for tracking ice-ocean mass exchange on the Earth's surface and estimating sea-level change 

Author(s):  
Surendra Adhikari ◽  
Erik Ivins ◽  
Eric Larour ◽  
Lambert Caron ◽  
Helene Seroussi

<p>Polar ice sheets are important components of the Earth System.  As the geometries of land, ocean, and ice sheets evolve, they must be consistently captured within the lexicon of geodesy.  Understanding the interplay between the processes such as ice-sheet dynamics, solid-Earth deformation, and sea-level adjustment requires both geodetically consistent and mass conserving descriptions of evolving land and ocean domains, grounded ice sheets and floating ice shelves, and their respective interfaces. Here we present mathematical descriptions of a generic level set that can be used to track both the grounding lines and coastlines, in light of ice-ocean mass exchange and complex feedbacks from the solid Earth and sea level. We next present a unified method to accurately compute the sea-level contribution of evolving ice sheets based on the change in ice thickness, bedrock elevation and mean sea level caused by any geophysical processes. Our formalism can be applied to arbitrary geometries and at all time scales. While it can be used for applications with modeling, observations and the combination of two, it is best suited for Earth System models, comprising ice sheets, solid Earth and sea level, that seek to conserve mass.</p><p>© 2020 California Institute of Technology. Government sponsorship is acknowledged.</p>

2020 ◽  
Vol 14 (9) ◽  
pp. 2819-2833
Author(s):  
Surendra Adhikari ◽  
Erik R. Ivins ◽  
Eric Larour ◽  
Lambert Caron ◽  
Helene Seroussi

Abstract. Polar ice sheets are important components of the Earth system. As the geometries of land, ocean and ice sheets evolve, they must be consistently captured within the lexicon of geodesy. Understanding the interplay between the processes such as ice-sheet dynamics, solid-Earth deformation, and sea-level adjustment requires both geodetically consistent and mass-conserving descriptions of evolving land and ocean domains, grounded ice sheets and floating ice shelves, and their respective interfaces. Here we present mathematical descriptions of a generic level set that can be used to track both the grounding lines and coastlines, in light of ice–ocean mass exchange and complex feedbacks from the solid Earth and sea level. We next present a unified method to accurately compute the sea-level contribution of evolving ice sheets based on the change in ice thickness, bedrock elevation and mean sea level caused by any geophysical processes. Our formalism can be applied to arbitrary geometries and at all timescales. While it can be used for applications with modeling, observations and the combination of two, it is best suited for Earth system models, comprising ice sheets, solid Earth and sea level, that seek to conserve mass.


2020 ◽  
Author(s):  
Surendra Adhikari ◽  
Erik R. Ivins ◽  
Eric Larour ◽  
Lambert Caron ◽  
Helene Seroussi

Abstract. Polar ice sheets are important components of any Earth System model. As the domains of land, ocean, and ice sheet change, they must be consistently defined within the lexicon of geodesy. Understanding the interplay between the processes such as ice sheet dynamics, solid Earth deformation, and sea level adjustment requires both consistent and mass conserving descriptions of evolving land and ocean domains, grounded and floating ice masks, coastlines and grounding lines, and bedrock and geoid height as viewed from space. Here we present a geometric description of an evolving ice sheet margin and its relations to sea level change, the position and loading of the solid Earth and include the ice shelves and adjacent ocean mass. We generalize the formulation so that it is applied to arbitrarily distributed ice, bedrock and adjacent ocean, and their interactive evolution. The formalism simplifies computational strategies that seek to conserve mass in Earth System models.


2018 ◽  
Author(s):  
Pippa L. Whitehouse

Abstract. Glacial Isostatic Adjustment (GIA) describes the response of the solid Earth, the gravitational field, and consequently the oceans to the growth and decay of the global ice sheets. It is a process that takes place relatively rapidly, triggering 100 m-scale changes in sea level and solid Earth deformation over just a few tens of thousands of years. Indeed, the first-order effects of GIA could already be quantified several hundred years ago without reliance on precise measurement techniques and scientists have been developing a unifying theory for the observations for over 200 years. Progress towards this goal required a number of significant breakthroughs to be made, including the recognition that ice sheets were once more extensive, the solid Earth changes shape over time, and gravity plays a central role in determining the pattern of sea-level change. This article describes in detail the historical development of the field of GIA and an overview of the processes involved. Significant recent progress has been made as concepts associated with GIA have begun to be incorporated into parallel fields of research; these advances are discussed, along with the role that GIA is likely to play in addressing outstanding research questions within the field of Earth system modelling.


2016 ◽  
Vol 12 (12) ◽  
pp. 2195-2213 ◽  
Author(s):  
Heiko Goelzer ◽  
Philippe Huybrechts ◽  
Marie-France Loutre ◽  
Thierry Fichefet

Abstract. As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG,  ∼  130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate–ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet–climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.


2002 ◽  
Vol 48 (163) ◽  
pp. 622-628 ◽  
Author(s):  
Frank Carsey ◽  
Alberto Behar ◽  
A. Lonne Lane ◽  
Vince Realmuto ◽  
Hermann Engelhardt

AbstractThe design and first deployment is described for the Jet Propulsion Laboratory–California Institute of Technology ice borehole camera system for acquisition of down-looking and side-looking images in a borehole made by a hot-water drill. The objective of the system is to acquire images in support of studies of the basal dynamics and thermodynamics of West Antarctic ice streams. A few sample images, obtained during the 2000/01 Antarctic field season, are shown from the basal layers of Ice Stream C.


Author(s):  
Ian Allison ◽  
William Colgan ◽  
Matt King ◽  
Frank Paul
Keyword(s):  

Author(s):  
A. Berger ◽  
TH. Fichefet ◽  
H. Gallee ◽  
I. Marsiat ◽  
CH. Tricot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document