Assessment of precipitation extremes in CMIP6 decadal hindcasts over India

Author(s):  
Jayshri Patel ◽  
Gnanaseelan Chellappan ◽  
Anant Parekh ◽  
jasti Chowdhary

<p>A skillful decadal precipitation prediction (DPP) is valuable for sustainable development, which currently face many challenges.Deriving reliable information from DPP is still a challenge because of the difficulties linked with precipitation predictions and coarse spatial resolution by General Circulation Models (GCMs) not able to be in a straight line appropriate for impact assessment.This study examines the decadal hindcast simulations of precipitation extreme over seven sub regions of India from different ocean-atmosphere coupled models from the Coupled Model Intercomparison Project(CMIP6) by applying quantile mapping approach.Each decadal hindcast consists of predictions for a 10-year period from the initial climate states of 1961 to 2014/2018 and the assessment of skill is carried out lead-wise from 1 to 10 for different season and different regions over India (both raw and bias corrected). The potential skill of precipitation extreme is examined in terms of  extreme precipitation index (EPIs) i.e.cumulative wet days (CWD), cumulative dry days (CDD), precipitation events between P1020(10 and 20 mm),P20P40(20 and 40 mm), PG40(>40 mm) and  annual maximum 1 & 5 day precipitation (Rx1day and Rx5day). The promising results revealed that the skills of DPPs are enhanced after the bias adjustment and the data product can be used as a key input for impacts assessments in the region.</p><p> </p>

2012 ◽  
Vol 5 (2) ◽  
pp. 837-871 ◽  
Author(s):  
F. J. Bragg ◽  
D. J. Lunt ◽  
A. M. Haywood

Abstract. The Pliocene Model Intercomparison Project (PlioMIP) project is a sub-project of the Paleoclimate Modelling Intercomparison Project (PMIP) whose objective is to compare predictions of the mid-Pliocene climate from the widest possible range of general circulation models. The mid-Pliocene (3.3–3.0 Ma) is the most recent sustained period of greater warmth and atmospheric carbon dioxide concentration than the pre-industrial times and as such has potential to inform predictions of our warming climate in the coming century. This paper describes the UK contribution to PlioMIP using the Hadley Centre Model both in atmosphere-only mode (HadAM3, PlioMIP Experiment 1) and atmosphere-ocean coupled mode (HadCM3, PlioMIP Experiment 2). The coupled model predicts a greater overall warming (3.3 °C) relative to the control than the atmosphere-only (2.5 °C). The Northern Hemisphere latitudinal temperature gradient is greater in the coupled model with a warmer equator and colder Arctic than the atmosphere-only model, which is constrained by sea surface temperatures from Pliocene proxy reconstructions. The atmosphere-only model predicts a reduction in equatorial precipitation and south Asian monsoon intensity whereas the coupled models shows and increase in the intensity of these systems. Sensitivity studies using alternative boundary conditions for both the Pliocene and the control simulations are presented, which indicate the sensitivity of the mid-Pliocene warming to uncertainties in both pre-industrial and mid-Pliocene climate.


2021 ◽  
pp. 1-61
Author(s):  
Jesse Norris ◽  
Alex Hall ◽  
J. David Neelin ◽  
Chad W. Thackeray ◽  
Di Chen

AbstractDaily and sub-daily precipitation extremes in historical Coupled-Model-Intercomparison-Project-Phase-6 (CMIP6) simulations are evaluated against satellite-based observational estimates. Extremes are defined as the precipitation amount exceeded every x years, ranging from 0.01–10, encompassing the rarest events that are detectable in the observational record without noisy results. With increasing temporal resolution there is an increased discrepancy between models and observations: for daily extremes the multi-model median underestimates the highest percentiles by about a third, and for 3-hourly extremes by about 75% in the tropics. The novelty of the current study is that, to understand the model spread, we evaluate the 3-D structure of the atmosphere when extremes occur. In midlatitudes, where extremes are simulated predominantly explicitly, the intuitive relationship exists whereby higher-resolution models produce larger extremes (r=–0.49), via greater vertical velocity. In the tropics, the convective fraction (the fraction of precipitation simulated directly from the convective scheme) is more relevant. For models below 60% convective fraction, precipitation amount decreases with convective fraction (r=–0.63), but above 75% convective fraction, this relationship breaks down. In the lower-convective-fraction models, there is more moisture in the lower troposphere, closer to saturation. In the higher-convective-fraction models, there is deeper convection and higher cloud tops, which appears to be more physical. Thus, the low-convective models are mostly closer to the observations of extreme precipitation in the tropics, but likely for the wrong reasons. These inter-model differences in the environment in which extremes are simulated hold clues into how parameterizations could be modified in general circulation models to produce more credible 21st-Century projections.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Vimal Mishra ◽  
Udit Bhatia ◽  
Amar Deep Tiwari

Abstract Climate change is likely to pose enormous challenges for agriculture, water resources, infrastructure, and livelihood of millions of people living in South Asia. Here, we develop daily bias-corrected data of precipitation, maximum and minimum temperatures at 0.25° spatial resolution for South Asia (India, Pakistan, Bangladesh, Nepal, Bhutan, and Sri Lanka) and 18 river basins located in the Indian sub-continent. The bias-corrected dataset is developed using Empirical Quantile Mapping (EQM) for the historic (1951–2014) and projected (2015–2100) climate for the four scenarios (SSP126, SSP245, SSP370, SSP585) using output from 13 General Circulation Models (GCMs) from Coupled Model Intercomparison Project-6 (CMIP6). The bias-corrected dataset was evaluated against the observations for both mean and extremes of precipitation, maximum and minimum temperatures. Bias corrected projections from 13 CMIP6-GCMs project a warmer (3–5°C) and wetter (13–30%) climate in South Asia in the 21st century. The bias-corrected projections from CMIP6-GCMs can be used for climate change impact assessment in South Asia and hydrologic impact assessment in the sub-continental river basins.


2011 ◽  
Vol 24 (22) ◽  
pp. 5935-5950 ◽  
Author(s):  
Elinor R. Martin ◽  
Courtney Schumacher

Abstract A census of 19 coupled and 12 uncoupled model runs from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) shows that all models have the ability to simulate the location and height of the Caribbean low-level jet (CLLJ); however, the observed semiannual cycle of the CLLJ magnitude was a challenge for the models to reproduce. In particular, model means failed to capture the strong July CLLJ peak as a result of the lack of westward and southward expansion of the North Atlantic subtropical high (NASH) between May and July. The NASH was also found to be too strong, particularly during the first 6 months of the year in the coupled model runs, which led to increased meridional sea level pressure gradients across the southern Caribbean and, hence, an overly strong CLLJ. The ability of the models to simulate the correlation between the CLLJ and regional precipitation varied based on season and region. During summer months, the negative correlation between the CLLJ and Caribbean precipitation anomalies was reproduced in the majority of models, with uncoupled models outperforming coupled models. The positive correlation between the CLLJ and the central U.S. precipitation during February was more challenging for the models, with the uncoupled models failing to reproduce a significant relationship. This may be a result of overactive convective parameterizations raining out too much moisture in the Caribbean meaning less is available for transport northward, or due to incorrect moisture fluxes over the Gulf of Mexico. The representation of the CLLJ in general circulation models has important consequences for accurate predictions and projections of future climate in the Caribbean and surrounding regions.


2016 ◽  
Vol 29 (21) ◽  
pp. 7599-7611 ◽  
Author(s):  
Simon Parsons ◽  
James A. Renwick ◽  
Adrian J. McDonald

AbstractThis study is concerned with blocking events (BEs) in the Southern Hemisphere (SH), their past variability, and future projections. ERA-Interim (ERA-I) is used to compare the historical output from four general circulation models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5); the output of the representative concentration pathway 4.5 and 8.5 (RCP4.5 and RCP8.5) projections are also examined. ERA-I shows that the higher latitudes of the South Pacific Ocean (SPO) are the main blocking region, with blocking occurring predominantly in winter. The CMIP5 historical simulations also agree well with ERA-I for annual and seasonal BE locations and frequencies. A reduction in BEs is observed in the SPO in the 2071–2100 period in the RCP4.5 projections, and this is more pronounced for the RCP8.5 projections and occurs predominantly during the spring and summer seasons. Preliminary investigations imply that the southern annular mode (SAM) is negatively correlated with blocking activity in the SPO in all seasons in the reanalysis. This negative correlation is also observed in the GCM historical output. However, in the RCP projections this correlation is reduced in three of the four models during summer, suggesting that SAM may be less influential in summertime blocking in the future.


2005 ◽  
Vol 18 (7) ◽  
pp. 1016-1031 ◽  
Author(s):  
Kenneth E. Kunkel ◽  
Xin-Zhong Liang

Abstract A diagnostic analysis of relationships between central U.S. climate characteristics and various flow and scalar fields was used to evaluate nine global coupled ocean–atmosphere general circulation models (CGCMs) participating in the Coupled Model Intercomparison Project (CMIP). To facilitate identification of physical mechanisms causing biases, data from 21 models participating in the Atmospheric Model Intercomparison Project (AMIP) were also used for certain key analyses. Most models reproduce basic features of the circulation, temperature, and precipitation patterns in the central United States, although no model exhibits small differences from the observationally based data for all characteristics in all seasons. Model ensemble means generally produce better agreement with the observationally based data than any single model. A fall precipitation deficiency, found in all AMIP and CMIP models except the third-generation Hadley Centre CGCM (HadCM3), appears to be related in part to slight biases in the flow on the western flank of the Atlantic subtropical ridge. In the model mean, the ridge at 850 hPa is displaced slightly to the north and to the west, resulting in weaker southerly flow into the central United States. The CMIP doubled-CO2 transient runs show warming (1°–5°C) for all models and seasons and variable precipitation changes over the central United States. Temperature (precipitation) changes are larger (mostly less) than the variations that are observed in the twentieth century and the model variations in the control simulations.


2017 ◽  
Vol 10 (7) ◽  
pp. 2547-2566 ◽  
Author(s):  
Keith D. Williams ◽  
Alejandro Bodas-Salcedo

Abstract. Most studies evaluating cloud in general circulation models present new diagnostic techniques or observational datasets, or apply a limited set of existing diagnostics to a number of models. In this study, we use a range of diagnostic techniques and observational datasets to provide a thorough evaluation of cloud, such as might be carried out during a model development process. The methodology is illustrated by analysing two configurations of the Met Office Unified Model – the currently operational configuration at the time of undertaking the study (Global Atmosphere 6, GA6), and the configuration which will underpin the United Kingdom's Earth System Model for CMIP6 (Coupled Model Intercomparison Project 6; GA7). By undertaking a more comprehensive analysis which includes compositing techniques, comparing against a set of quite different observational instruments and evaluating the model across a range of timescales, the risks of drawing the wrong conclusions due to compensating model errors are minimized and a more accurate overall picture of model performance can be drawn. Overall the two configurations analysed perform well, especially in terms of cloud amount. GA6 has excessive thin cirrus which is removed in GA7. The primary remaining errors in both configurations are the in-cloud albedos which are too high in most Northern Hemisphere cloud types and sub-tropical stratocumulus, whilst the stratocumulus on the cold-air side of Southern Hemisphere cyclones has in-cloud albedos which are too low.


2016 ◽  
Vol 97 (12) ◽  
pp. 2305-2328 ◽  
Author(s):  
Paquita Zuidema ◽  
Ping Chang ◽  
Brian Medeiros ◽  
Ben P. Kirtman ◽  
Roberto Mechoso ◽  
...  

Abstract Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.


Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Cameron Ellis ◽  
Annie Visser-Quinn ◽  
Gordon Aitken ◽  
Lindsay Beevers

With evidence suggesting that climate change is resulting in changes within the hydrologic cycle, the ability to robustly model hydroclimatic response is critical. This paper assesses how extreme runoff—1:2- and 1:30-year return period (RP) events—may change at a regional level across the UK by the 2080s (2069–2098). Capturing uncertainty in the hydroclimatic modelling chain, flow projections were extracted from the EDgE (End-to-end Demonstrator for improved decision-making in the water sector in Europe) multi-model ensemble: five Coupled Model Intercomparison Project (CMIP5) General Circulation Models and four hydrological models forced under emissions scenarios Representative Concentration Pathway (RCP) 2.6 and RCP 8.5 (5 × 4 × 2 chains). Uncertainty in extreme value parameterisation was captured through consideration of two methods: generalised extreme value (GEV) and generalised logistic (GL). The method was applied across 192 catchments and aggregated to eight regions. The results suggest that, by the 2080s, many regions could experience large increases in extreme runoff, with a maximum mean change signal of +34% exhibited in East Scotland (1:2-year RP). Combined with increasing urbanisation, these estimates paint a concerning picture for the future UK flood landscape. Model chain uncertainty was found to increase by the 2080s, though extreme value (EV) parameter uncertainty becomes dominant at the 1:30-year RP (exceeding 60% in some regions), highlighting the importance of capturing both the associated EV parameter and ensemble uncertainty.


2012 ◽  
Vol 25 (12) ◽  
pp. 4275-4293 ◽  
Author(s):  
James Lloyd ◽  
Eric Guilyardi ◽  
Hilary Weller

Abstract Previous studies using coupled general circulation models (GCMs) suggest that the atmosphere model plays a dominant role in the modeled El Niño–Southern Oscillation (ENSO), and that intermodel differences in the thermodynamical damping of sea surface temperatures (SSTs) are a dominant contributor to the ENSO amplitude diversity. This study presents a detailed analysis of the shortwave flux feedback (αSW) in 12 Coupled Model Intercomparison Project phase 3 (CMIP3) simulations, motivated by findings that αSW is the primary contributor to model thermodynamical damping errors. A “feedback decomposition method,” developed to elucidate the αSW biases, shows that all models underestimate the dynamical atmospheric response to SSTs in the eastern equatorial Pacific, leading to underestimated αSW values. Biases in the cloud response to dynamics and the shortwave interception by clouds also contribute to errors in αSW. Changes in the αSW feedback between the coupled and corresponding atmosphere-only simulations are related to changes in the mean dynamics. A large nonlinearity is found in the observed and modeled SW flux feedback, hidden when linearly calculating αSW. In the observations, two physical mechanisms are proposed to explain this nonlinearity: 1) a weaker subsidence response to cold SST anomalies than the ascent response to warm SST anomalies and 2) a nonlinear high-level cloud cover response to SST. The shortwave flux feedback nonlinearity tends to be underestimated by the models, linked to an underestimated nonlinearity in the dynamical response to SST. The process-based methodology presented in this study may help to correct model ENSO atmospheric biases, ultimately leading to an improved simulation of ENSO in GCMs.


Sign in / Sign up

Export Citation Format

Share Document