The use of expedition cruise ships and citizen science to bridge the gaps in plastic marine litter knowledge in remote areas. 

Author(s):  
Verena Meraldi ◽  
Tudor Morgan ◽  
Kai Sørensen ◽  
Bert van Bavel

<p>Plastics and microplastics are regularly found in the marine environment around the world. Currently, the spatial and temporal dynamics of microplastics in remote areas, including polar regions, are poorly assessed and only limited long-term data is available on occurrence. Long-term data series are required to address changes in abundances of microplastics including variations in spatial and temporal distribution as well as to understand the influence of, for example, different seasons, changing weather or hydrological conditions. But there is very little data from remote regions of the world<sup>(1)</sup> including the Arctic and Antarctic.</p><p>One approach is to use ships of opportunity (www.norsoop.com) to collect data over replicated transects: these include research vessels as well as commercial vessels and expedition cruise ships. Advances in technology enable assessment of microplastic abundance at large spatial scale using existing infrastructure in addition to the collection of oceanographic meta-data. As part of the Hurtigruten – NIVA collaboration, a microplastic sampling module and a marine monitoring system (Ferry Box) was fitted on Hurtigruten’s Expedition vessel MS Roald Amundsen. The science center in this expedition ship, where single use plastic has been removed from all areas, provides a lab facility for preliminary plastic analysis and also a place for interaction with the passengers and engagement in citizen science. During the first year of operation, NIVA and Hurtigruten have collected microplastic samples in the Arctic and the Antarctic for long time periods. In addition, as part of a citizen science project, data and samples have been collected during beach clean-ups in remote areas and analysed on board using a handheld NIR smartphone scanner directly linked to a NIVA cloud database.</p><p>Average levels of microplastic within the Arctic (1.8-10 n/m<sup>3</sup>) and Antarctic (1.8-4.6) are still relatively low and consist mostly of fibres. The levels found in the Arctic study were comparable with the results from Lusher et al. 2015 and recent work in the Russian Arctic. Cellulose and cotton-based fibres dominate in the Antarctic samples and polyester is the dominant polymeric fibre. A citizen science project involving a beach clean-up and the subsequent analysis of the samples collected was performed on board MS Roald Amundsen in the Falkland/Malvinas Islands. The results showed large amounts of fishery related material including several polymer-based ropes and net pieces but also plastic utensils, food wrapping and plastic bottles.</p><p> (1)        GESAMP (2016). Sources, fate and effects of microplastics in the marine environment: part two of a global assessment (Kershaw, P.J., and Rochman, C.M., eds). Rep. Stud. GESAMP No. 93, 220 p.</p><p>(2)         Lusher, A. L., Tirelli, V., O’Connor, I., and Officer, R. (2015). Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Nature-scientific reports. 9 p.</p><p>(3)         Yakushev E., Gebruk A., Osadchiev A., Pakhomova S., Lusher A., Berezina A., van Bavel B., Vorozheikina E., Chernykh D., Kolbasova G., Razgon I., Semiletov I. Microplastics distribution in the Eurasian Arctic is affected by Atlantic waters and Siberian rivers. Communications Earth & Environment in press. DOI: 10.1038/s43247-021-00091-0</p>

Author(s):  
N L Eisner ◽  
O Barragán ◽  
C Lintott ◽  
S Aigrain ◽  
B Nicholson ◽  
...  

Abstract We present the results from the first two years of the Planet Hunters TESS citizen science project, which identifies planet candidates in the TESS data by engaging members of the general public. Over 22,000 citizen scientists from around the world visually inspected the first 26 Sectors of TESS data in order to help identify transit-like signals. We use a clustering algorithm to combine these classifications into a ranked list of events for each sector, the top 500 of which are then visually vetted by the science team. We assess the detection efficiency of this methodology by comparing our results to the list of TESS Objects of Interest (TOIs) and show that we recover 85 % of the TOIs with radii greater than 4 ⊕ and 51 % of those with radii between 3 and 4 R⊕. Additionally, we present our 90 most promising planet candidates that had not previously been identified by other teams, 73 of which exhibit only a single transit event in the TESS light curve, and outline our efforts to follow these candidates up using ground-based observatories. Finally, we present noteworthy stellar systems that were identified through the Planet Hunters TESS project.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Heather R. Cunningham ◽  
Charles A. Davis ◽  
Christopher W. Swarth ◽  
Glenn D. Therres

Declines of amphibian and reptile populations are well documented. Yet a lack of understanding of their distribution may hinder conservation planning for these species. The Maryland Amphibian and Reptile Atlas project (MARA) was launched in 2010. This five-year, citizen science project will document the distribution of the 93 amphibian and reptile species in Maryland. During the 2010 and 2011 field seasons, 488 registered MARA volunteers collected 13,919 occurrence records that document 85 of Maryland's amphibian and reptile species, including 19 frog, 20 salamander, five lizard, 25 snake, and 16 turtle species. Thirteen of these species are of conservation concern in Maryland. The MARA will establish a baseline by which future changes in the distribution of populations of native herpetofauna can be assessed as well as provide information for immediate management actions for rare and threatened species. As a citizen science project it has the added benefit of educating citizens about native amphibian and reptile diversity and its ecological benefits—an important step in creating an informed society that actively participates in the long-term conservation of Maryland's nature heritage.


Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 309
Author(s):  
Rhian A. Salmon ◽  
Samuel Rammell ◽  
Myfanwy T. Emeny ◽  
Stephen Hartley

In this paper, we focus on different roles in citizen science projects, and their respective relationships. We propose a tripartite model that recognises not only citizens and scientists, but also an important third role, which we call the ‘enabler’. In doing so, we acknowledge that additional expertise and skillsets are often present in citizen science projects, but are frequently overlooked in associated literature. We interrogate this model by applying it to three case studies and explore how the success and sustainability of a citizen science project requires all roles to be acknowledged and interacting appropriately. In this era of ‘wicked problems’, the nature of science and science communication has become more complex. In order to address critical emerging issues, a greater number of stakeholders are engaging in multi-party partnerships and research is becoming increasingly interdisciplinary. Within this context, explicitly acknowledging the role and motivations of everyone involved can provide a framework for enhanced project transparency, delivery, evaluation and impact. By adapting our understanding of citizen science to better recognise the complexity of the organisational systems within which they operate, we propose an opportunity to strengthen the collaborative delivery of both valuable scientific research and public engagement.


Author(s):  
Fernanda Beatriz Jordan Rojas Dallaqua ◽  
Fabio Augusto Faria ◽  
Alvaro Luiz Fazenda

2018 ◽  
Vol 48 (4) ◽  
pp. 564-588 ◽  
Author(s):  
Dick Kasperowski ◽  
Thomas Hillman

In the past decade, some areas of science have begun turning to masses of online volunteers through open calls for generating and classifying very large sets of data. The purpose of this study is to investigate the epistemic culture of a large-scale online citizen science project, the Galaxy Zoo, that turns to volunteers for the classification of images of galaxies. For this task, we chose to apply the concepts of programs and antiprograms to examine the ‘essential tensions’ that arise in relation to the mobilizing values of a citizen science project and the epistemic subjects and cultures that are enacted by its volunteers. Our premise is that these tensions reveal central features of the epistemic subjects and distributed cognition of epistemic cultures in these large-scale citizen science projects.


Author(s):  
José Luís Araújo ◽  
Carla Morais ◽  
João Paiva

The active participation of citizens in scientific research, through citizen science, has been proven successful. However, knowledge on the potential of citizen science within formal chemistry learning, at the conceptual...


2021 ◽  
Author(s):  
Michael Poulsen

<p><strong>Monitoring Svalbard’s environment and cultural heritage through citizen science by expedition cruises</strong></p><p>Michael K. Poulsen1, Lisbeth Iversen2, Ted Cheeseman3, Børge Damsgård4, Verena Meraldi5, Naja Elisabeth Mikkelsen6, Zdenka Sokolíčková7, Kai Sørensen8, Agnieszka Tatarek9, Penelope Wagner10, Stein Sandven2, and Finn Danielsen1</p><p>1NORDECO, 2NERSC, 3PCSC, 4UNIS, 5Hurtigruten, 6GEUS, 7University of Oslo, 8NIVA, 9IOPAN, 10MET Norway</p><p><strong>Why expedition cruise monitoring is important for Svalbard. </strong>The Arctic environment  is changing fast, largely due to increasing temperatures and human activities. The continuous areas of wilderness and the cultural heritage sites in Svalbard need to be managed based on a solid understanding.</p><p>The natural environment of Svalbard is rich compared to other polar regions. Historical remains are plentiful. The Svalbard Environmental Protection Act aims at regulating hunting, fishing, industrial activities, mining, commerce and tourism. Expedition cruises regularly reach otherwise rarely visited places.</p><p><strong>Steps taken to improve environmental monitoring. </strong>A workshop for enhancing the environmental monitoring efforts of expedition cruise ships was held in Longyearbyen in 2019, facilitated by the INTAROS project and the Association of Arctic Expedition Cruise Operators  (https://intaros.nersc.no/content/cruise-expedition-monitoring-workshop) with representatives of cruise operators, citizen science programs, local government and scientists. They agreed on a pilot assessment of monitoring programs during 2019.</p><p><strong>Results show the importance of cruise ship observations. </strong>The provisional findings of the pilot assessment suggest thatexpedition cruises go almost everywhere around Svalbard and gather significant and relevant data on the environment, contributing for example to an improved understanding of thestatus and distribution of wildlife. Observations are often documented with photographs. More than 150 persons contributed observations during 2019 to eBird and Happywhale. iNaturalist, not part of the pilot assessment, also received many contributions. The pilot assessment was unable to establish a useful citizen science program for testing monitoring of cultural remains.</p><p><strong>Conclusions relevant for monitoring and environmental management. </strong>Cruise ships collect environmental data that are valuable for the scientific community and for public decision-makers. The Governor of Svalbard isresponsible for environmental management in Svalbard. Data on the environment and on cultural remains from expedition cruises can be useful for the Governor’s office. Improved communication between citizen science programs and those responsible for environmental management decisions is likely to increase the quantity of relevant information that reaches public decision makers.</p><p><strong>Recommendations for improving the use of cruise ship observations and monitoring.</strong></p><ul><li>1) All cruise expedition ships should be equipped with tablets containing the apps for the same small selection of citizen scienceprograms so that they can easily upload records.</li> <li>2) Evaluation of data that can be created and how such data can contribute to monitoring programs, to ensure that data is made readily available in a form that is useful for institutions responsible for planning and improving environmental management.</li> <li>3) Clear lines of communication between citizen science program participants, citizen science program organizers, the scientific community and decision makers should be further developed.</li> <li>4) Developing expedition cruise monitoring is of high priority in Svalbard, but is also highly relevant to other polar regions.</li> <li>5) Further work is necessary to fully understand the feasibility and potential of coordinated expedition cruise operator based environmental observing in the Arctic.</li> </ul>


2019 ◽  
pp. 186-190
Author(s):  
Nicholas Mee

Frank Drake devised the Drake equation to estimate the number of advanced civilizations in the galaxy with the aim of gathering support for SETI (the Search for Extraterrestrial Intelligence). The earliest attempts to detect radio signals from extraterrestrials date back to the 1960s. Paul Allen has funded the Allen Telescope, Array which is dedicated to searching for such signals. When complete it will include 350 radio dishes. The citizen science project SETI@Home allows anyone with a home PC to participate in analysing the data amassed by the SETI project.


Sign in / Sign up

Export Citation Format

Share Document