scholarly journals Dynamical and thermodynamical contributions to the mid-latitude atmospheric response to Arctic sea ice decline

Author(s):  
Svenya Chripko ◽  
Rym Msadek ◽  
Emilia Sanchez-Gomez ◽  
Laurent Terray ◽  
Laurent Bessières ◽  
...  

<p>Previous climate model studies have shown that Arctic sea ice decline can solely affect weather and climate at lower latitudes during the cold season. However, the mechanisms beneath this linkage are poorly understood. Whether sea ice loss have had an influence on the lower latitudes climate over the past decades is also uncertain (Barnes and Screen 2015). The goal of this work is to better understand the relative contributions of dyncamical and thermodynamical changes in the atmospheric response to Arctic sea ice loss, which have been suggested to oppose each other (Screen 2017). We conducted two sets of sensitivity transient experiments that allow to isolate the effect of Arctic sea ice decline on the mid-latitudes from other climate forcings, using the climate model CNRM-CM6 (Voldoire et al. 2019) in a coupled configuration or with an atmosphere-only. The first set of experiments, that is part of the European H2020 PRIMAVERA project, consists of a 100-member ensemble in which sea ice albedo is reduced to the ocean value (PERT) in the fully coupled CNRM-CM6, and which is compared to a 1950 control run (CTL) (Haarsma et al. 2016). This yields idealised ice-free conditions in summer and a more moderate sea ice reduction during the following months. The second set of experiments, that is part of the CMIP6 Polar Amplification Model Intercomparison Project (PAMIP, Smith et al. 2019), consists of a 300-member ensemble in which the atmospheric component of CNRM-CM6 is forced by sea ice anomalies associated with a future 2°C warming (FUT) and present day sea surface temperatures (SSTs). These are compared to experiments in which the atmosphere is forced by present-day sea ice conditions (PD) and the same SSTs. To extract the dynamical component of the response in the two sets of experiments, we use a dynamical adjustment method (Deser et al. 2016) based on a regional reconstruction of circulation analogs. We focus on three mid-latitudes regions in which a significant near-surface temperature response has been identified, namely North America, Europe and central Asia. We show that the cooling occurring over central Asia in both sets of experiments is dynamically-induced through an intensification of the Siberian High, and that opposed temperature responses over North America between the two sets of experiments could be explained by opposed dynamical components occurring in response to the imposed Arctic sea ice decline. Finally, we discuss whether different dynamical and thermodynamical contributions in the PAMIP multi-model experiments could explain the multi-model differences in the atmospheric response to sea ice loss.</p>

2021 ◽  
pp. 1-61
Author(s):  
Svenya Chripko ◽  
Rym Msadek ◽  
Emilia Sanchez-Gomez ◽  
Laurent Terray ◽  
Laurent Bessières ◽  
...  

AbstractThe Northern Hemisphere transient atmospheric response to Arctic sea decline is investigated in autumn and winter, using sensitivity experiments performed with the CNRMCM6-1 high-top climate model. Arctic sea ice albedo is reduced to the ocean value, yielding ice-free conditions during summer and a more moderate sea ice reduction during the following months. A strong ampli_cation of temperatures over the Arctic is induced by sea ice loss, with values reaching up to 25°C near the surface in autumn. Signi_cant surface temperature anomalies are also found over the mid-latitudes, with a warming reaching 1°C over North America and Europe, and a cooling reaching 1°C over central Asia. Using a dynamical adjustment method based on a regional reconstruction of circulation analogs, we show that the warming over North America and Europe can be explained both by changes in the atmospheric circulation and by the advection of warmer oceanic air by the climatological ow. In contrast, we demonstrate that the sea-ice induced cooling over central Asia is solely due to dynamical changes, involving an intensi_cation of the Siberian High and a cyclonic anomaly over the Sea of Okhotsk. In the troposphere, the abrupt Arctic sea ice decline favours a narrowing of the subtropical jet stream and a slight weakening of the lower part of the polar vortex that is explained by a weak enhancement of upward wave activity toward the stratosphere. We further show that reduced Arctic sea ice in our experiments is mainly associated with less severe cold extremes in the mid-latitudes.


2021 ◽  
Author(s):  
Jan Streffing ◽  
Tido Semmler ◽  
Lorenzo Zampieri ◽  
Thomas Jung

<p>The impact of Arctic sea ice decline on the weather and climate in mid-latitudes is still much debated, with observation suggesting a strong and models a much weaker link. In this study, we use the atmospheric model OpenIFS, in a set of model experiments following the protocol outlined in the Polar Amplification Model Intercomparison Project (PAMIP), to investigate whether the simulated atmospheric response to future changes in Arctic sea ice fundamentally depends on model resolution. More specifically, we increase the horizontal resolution of the model from 125km to 39km with 91 vertical levels; in a second step resolution is further increased to 16km with 137 levels in the vertical. We find that neither the mean atmospheric response nor the ensemble convergence toward the mean are strongly impacted by the model resolutions considered here.</p>


2021 ◽  
Author(s):  
Lettie Roach ◽  
Edward Blanchard-Wrigglesworth ◽  
Cecilia Bitz

<p><span>It is broadly accepted that variability and trends in Arctic sea ice remain poorly simulated even in the most state-of-the-art coupled climate and climate prediction models. Here, we show that a modern coupled climate model (CESM1) is in fact able to reproduce the observed variability and decline in summer sea ice when winds are nudged towards values from reanalysis.<span>  </span>We argue that the nudged-winds framework provides a straightforward way of evaluating models by removing much of the contribution of internal variability, revealing model successes and biases. The results demonstrate the importance of atmospheric circulation in driving interannual variability in sea ice and near-surface air temperatures, particularly in the summer. Finally, we will discuss the potential role of ocean surface waves in driving variability in Arctic sea ice, based on observational analysis and new coupled modelling results.</span></p>


2016 ◽  
Vol 29 (16) ◽  
pp. 5893-5913 ◽  
Author(s):  
Tido Semmler ◽  
Lukrecia Stulic ◽  
Thomas Jung ◽  
Natalia Tilinina ◽  
Camila Campos ◽  
...  

Abstract Arctic sea ice decline is expected to continue throughout the twenty-first century as a result of increased greenhouse gas concentrations. Here we investigate the impact of a strong Arctic sea ice decline on the atmospheric circulation and low pressure systems in the Northern Hemisphere through numerical experimentation with a coupled climate model. More specifically, a large ensemble of 1-yr-long integrations, initialized on 1 June with Arctic sea ice thickness artificially reduced by 80%, is compared to corresponding unperturbed control experiments. The sensitivity experiment shows an ice-free Arctic from July to October; during autumn the largest near-surface temperature increase of about 15 K is found in the central Arctic, which goes along with a reduced meridional temperature gradient, a decreased jet stream, and a southward shifted Northern Hemisphere storm track; and the near-surface temperature response in winter and spring reduces substantially due to relatively fast sea ice growth during the freezing season. Changes in the maximum Eady growth rate are generally below 5% and hardly significant, with reduced vertical wind shear and reduced vertical stability counteracting each other. The reduced vertical wind shear manifests itself in a decrease of synoptic activity by up to 10% and shallower cyclones while the reduced vertical stability along with stronger diabatic heating due to more available moisture may be responsible for the stronger deepening rates and thus faster cyclone development once a cyclone starts to form. Furthermore, precipitation minus evaporation decreases over the Arctic because the increase in evaporation outweighs that for precipitation, with implications for the ocean stratification and hence ocean circulation.


2021 ◽  
Author(s):  
Harry Heorton ◽  
Michel Tsamados ◽  
Paul Holland ◽  
Jack Landy

<p><span>We combine satellite-derived observations of sea ice concentration, drift, and thickness to provide the first observational decomposition of the dynamic (advection/divergence) and thermodynamic (melt/growth) drivers of wintertime Arctic sea ice volume change. Ten winter growth seasons are analyzed over the CryoSat-2 period between October 2010 and April 2020. Sensitivity to several observational products is performed to provide an estimated uncertainty of the budget calculations. The total thermodynamic ice volume growth and dynamic ice losses are calculated with marked seasonal, inter-annual and regional variations</span><span>. Ice growth is fastest during Autumn, in the Marginal Seas and over first year ice</span><span>. Our budget decomposition methodology can help diagnose the processes confounding climate model predictions of sea ice. We make our product and code available to the community in monthly pan-Arctic netcdft files for the entire October 2010 to April 2020 period.</span></p>


2019 ◽  
Vol 32 (5) ◽  
pp. 1361-1380 ◽  
Author(s):  
J. Ono ◽  
H. Tatebe ◽  
Y. Komuro

Abstract The mechanisms for and predictability of a drastic reduction in the Arctic sea ice extent (SIE) are investigated using the Model for Interdisciplinary Research on Climate (MIROC) version 5.2. Here, a control (CTRL) with forcing fixed at year 2000 levels and perfect-model ensemble prediction (PRED) experiments are conducted. In CTRL, three (model years 51, 56, and 57) drastic SIE reductions occur during a 200-yr-long integration. In year 56, the sea ice moves offshore in association with a positive phase of the summer Arctic dipole anomaly (ADA) index and melts due to heat input through the increased open water area, and the SIE drastically decreases. This provides the preconditioning for the lowest SIE in year 57 when the Arctic Ocean interior is in a warm state and the spring sea ice volume has a large negative anomaly due to drastic ice reduction in the previous year. Although the ADA is one of the key mechanisms behind sea ice reduction, it does not always cause a drastic reduction. Our analysis suggests that wind direction favoring offshore ice motion is a more important factor for drastic ice reduction events. In years experiencing drastic ice reduction events, the September SIE can be skillfully predicted in PRED started from July, but not from April. This is because the forecast errors for the July sea level pressure and those for the sea ice concentration and sea ice thickness along the ice edge are large in PRED started from April.


Sign in / Sign up

Export Citation Format

Share Document