Identifying parameters on genesis of coronal phases at olivine-plagioclase contact: A comparison from different geological terrane

Author(s):  
Meenakshi Banerjee ◽  
Vedanta Adak ◽  
Upama Dutta

<p>Corona texture between olivine-plagioclase is a common phenomenon in metabasic rocks and has been reported from different geological terrane of the world. However, the documented coronal phases from these terrane show significant variation in terms of number and composition. In this study, we have tried to explore the effect of different parameters like pressure, temperature, reactant bulk composition, availability of fluid, chemical potential gradient etc. on the genesis of such distinct coronal minerals. To address this question, we have compared three coronal assemblages developed between olivine and plagioclase from published literature (Gallien et al. 2012; Banerjee et al. 2019; Adak & Dutta, 2020). These three samples represent different terrane and have distinctly separate geological evolutionary history that led in formation of the texture. The samples are – i) #CGGC, a mafic intrusive from Chotanagpur Granite Gneissic Complex, India (Adak & Dutta, 2020); ii) #GTSI, an olivine bearing mafic dyke from Granulite Terrane of South India (Banerjee et al. 2019); and iii) #VFH, a troctolitic gabbro from Valle Fértil and La Huerta range, Argentina (Gallien et al. 2012). The layers in coronae of #CGGC and #GTSI are defined by three phases of separate composition; orthopyroxene and amphibole are common, but #CGGC contains spinel and #GTSI contains magnetite. Whereas, #VFH contains four phases, clinopyroxene in addition to orthopyroxene, spinel and amphibole. Besides evaluation of reactant composition and their effect, our methodology also incorporates Schrienemaker’s analysis through P-T and chemical potential diagrams. Considering the chemistry of both the reactant and product phases we have used a simplified CMASH system and calculated μCaO–μH<sub>2</sub>O, μMgO–μH<sub>2</sub>O, μCaO–μMgO diagram along with petrogenetic grid for each sample. The results show that along with change in P-T, factors like initial composition of the reactant minerals, behaviour of the system during reaction (open/closed) and P-T-t path of evolution also play significant role in determining the products in coronae formed from the reactant olivine and plagioclase.</p><p> </p>

1965 ◽  
Vol 208 (2) ◽  
pp. 401-406 ◽  
Author(s):  
Alvin Essig

Previous studies have demonstrated that removal of potassium from sodium-Ringer solution bathing the serosal surface of the toad badder depressed net sodium transport to some 5% of control value, whereas with choline-Ringer solution as serosal medium removal of serosal potassium depressed net sodium transport only to some 55% of control value. Although transport is down a chemical potential gradient in the latter situation, it appears to be an active process, for it is depressed by anaerobiosis, and persists against an electrochemical potential gradient. The data suggest that the concentration of potassium at the serosal aspect of the sodium pump is not in itself the rate-determining factor for active sodium transport following removal of serosal potassium.


1990 ◽  
Vol 268 (2) ◽  
pp. 499-505 ◽  
Author(s):  
M A Mindham ◽  
P A Mayes ◽  
N E Miller

1. A method has been developed which enables the rat spleen to be loaded in vivo with [3H]cholesterol to a high specific radioactivity using cholesterol-labelled erythrocytes. The erythrocytes were shown to be rapidly degraded by the spleen and not released intact during subsequent perfusion. 2. When labelled spleens were perfused with whole blood or serum, lipoproteins in the high-density lipoprotein (HDL) range were shown to be the principal lipoprotein vehicles for the removal of cholesterol, the specific radioactivity of cholesterol being much greater in the HDL fractions than in other lipoproteins, particularly in the d 1.175-1.210 fraction. 3. The formation of [3H]cholesteryl ester was restricted to the major HDL fractions. 4. Experiments utilizing individual HDL fractions added to a basal perfusate indicated that HDL1 (d 1.050-1.085) was of less importance in the removal of cholesterol from the spleen than HDL subfractions of higher density. Also, a decrease in density of the lipoproteins was observed during perfusion, concurrent with uptake of cholesterol, especially in the d 1.085-1.125 subfraction. 5. When [3H]cholesterol-labelled spleens were perfused with whole blood, about half of the radioactivity released was detected in erythrocytes, indicating a rapid exchange or transport of cholesterol. Thus erythrocytes could play an important role in the transfer of unesterified cholesterol when the chemical potential gradient is favourable.


2010 ◽  
Vol 667 ◽  
pp. 216-259 ◽  
Author(s):  
JOHN F. BRADY

Diffusiophoresis, the motion of a particle in response to an externally imposed concentration gradient of a solute species, is analysed from both the traditional coarse-grained macroscopic (i.e. continuum) perspective and from a fine-grained micromechanical level in which the particle and the solute are treated on the same footing as Brownian particles dispersed in a solvent. It is shown that although the two approaches agree when the solute is much smaller in size than the phoretic particle and is present at very dilute concentrations, the micromechanical colloidal perspective relaxes these restrictions and applies to any size ratio and any concentration of solute. The different descriptions also provide different mechanical analyses of phoretic motion. At the continuum level the macroscopic hydrodynamic stress and interactive force with the solute sum to give zero total force, a condition for phoretic motion. At the colloidal level, the particle's motion is shown to have two contributions: (i) a ‘back-flow’ contribution composed of the motion of the particle due to the solute chemical potential gradient force acting on it and a compensating fluid motion driven by the long-range hydrodynamic velocity disturbance caused by the chemical potential gradient force acting on all the solute particles and (ii) an indirect contribution arising from the mutual interparticle and Brownian forces on the solute and phoretic particle, that contribution being non-zero because the distribution of solute about the phoretic particle is driven out of equilibrium by the chemical potential gradient of the solute. At the colloidal level the forces acting on the phoretic particle – both the statistical or ‘thermodynamic’ chemical potential gradient and Brownian forces and the interparticle force – are balanced by the Stokes drag of the solvent to give the net phoretic velocity.For a particle undergoing self-phoresis or autonomous motion, as can result from chemical reactions occurring asymmetrically on a particle surface, e.g. catalytic nanomotors, there is no imposed chemical potential gradient and the back-flow contribution is absent. Only the indirect Brownian and interparticle forces contribution is responsible for the motion. The velocity of the particle resulting from this contribution can be written in terms of a mobility times the integral of the local ‘solute pressure’ – the solute concentration times the thermal energy – over the surface of contact between the particle and the solute. This was the approach taken by Córdova-Figueroa & Brady (Phys. Rev. Lett., vol. 100, 2008, 158303) in their analysis of self-propulsion. It is shown that full hydrodynamic interactions can be incorporated into their analysis by a simple scale factor.


The transport of adsorbates in microporous random networks is examined in the presence of an arbitrary nonlinear local isotherm. The transport model is developed by means of a correlated random walk theory, assuming pore mouth equilibrium at an intersection in the network and a local chemical potential gradient driving force. The results demonstrate more rapid increase of the transport coefficient with adsorbed concentration than straightforward use of the classical Darken equation. Application of the theory to experimental data for diffusion of carbon dioxide in carbolac, with various local isotherm choices, shows good agreement when the activation energy associated with the mobility based on a chemical potential gradient driving force is taken as the Henry’s law region isosteric heat of adsorption. Furthermore, a combination of transport and equilibrium data can discriminate better among competing isotherms than the latter data alone.


Nature ◽  
1969 ◽  
Vol 222 (5192) ◽  
pp. 476-477 ◽  
Author(s):  
J. H. MOORE ◽  
R. S. SCHECHTER

2020 ◽  
Vol 71 (6) ◽  
pp. 51-58
Author(s):  
Ihsan Bozdogan ◽  
Muserref Onal ◽  
Abdullah Devrim Pekdemir ◽  
Yuksel Sarikaya

Since their exceptional rheological behavior, bentonite suspensions are widely used in engineering, industrial, agricultural, and drilling applications. So, the aim of the present study is to investigate the rheological properties of three types aqueous suspensions prepared with calcium bentonite (CaB), sodium bentonite (NaB) obtained from that by Na2CO3 activation, and NaB with the excess soda. The CaB taken from Giresun/Turkey region contains calcium smectite (CaxS) as clay mineral and opal CT (SiO2.nH2O) as impurity which is paracrystalline silica. Soda content by the activation and bentonite content in the suspension were changed in the interval of 2.5-15.0% and 5-20% by mass, respectively. CaxS completely converted to sodium smectite (Na2xS) by the activation with the soda content of 2.5% and then Na2xS+Na2CO3 mixtures formed. Rheological properties of these aqueous suspensions were measured using a Fann Viscometer. These properties reached their maxima by the most thixotropic Na2xS suspensions and greatly increased with the increasing of smectite content. Rheological plots drawn of the shear rate vs. shear stress in the interval of 170-1020 s-1 showed that the suspensions flow as a Bingham Plastic. Change in rheological properties depending on the smectite type and content as well as excess soda content was explained thermodynamically based on the chemical potential gradient between interlayer and dispenser waters.


Sign in / Sign up

Export Citation Format

Share Document