An open-source integrated solution for flow and transport in random heterogeneous porous media

Author(s):  
Eugenio Pescimoro ◽  
Matteo Icardi ◽  
Federico Municchi ◽  
Marco Bianchi

<p>Due to the increasing challenges to preserve water quality and supply at global scale, groundwater flow modeling has become a tool of pivotal relevance for remediation, implementation of policies, and design of applications for recharge management. The strain towards faster and more reliable hydrogeological simulations triggered the development of upscaled and multi-scale approaches employing different diffusion and dispersion models that are still the object of much debate in the community. Our ongoing study focuses on the up scaling of solute transport through heterogeneous geological domains by means of an extensive three-dimensional simulation study, based on a new open-source C++ library, built on top of the well-know finite-volume library OpenFOAM®. We integrate the whole workflow, from geostatistical random field generators to flow and transport solvers with integrated post-processing capabilities. The robustness, scalability and flexibility of the library makes it suitable framework for the development, testing, and application of upscaling techniques.  </p><p>Being the subsurface inaccessible by nature, the appeal to geostatistical techniques is a well-established approach to construct a realistic domain for flow and transport simulations. However,  additional challenges are posed by the numerical simulation of highly heterogeneous materials. Indeed, the problem is twofold: on one side it is not always possible to characterize the heterogeneity in a deterministic way, while on the other side numerical methods which are effective for elliptic and parabolic equations solved over homogeneous domains might suffer in heterogeneous media. Both challenges were effectively tackled using the open-soruce library OpenFOAM whose implementation and capabilities will be illustrated. Preliminary results on flow and transport simulations performed on truncated pluri-Gaussian permeability fields will be shown and the influence of geostatistical metrics (e.g. correlation lengths, variance, geological entropy) on the flow and transport results (e.g. average velocity and breakthrough curves) analysed.</p><p>Extensions to variable-density, mobile-immobile, and multi-rate mass transfer formulations are also presented in the context of the EU project “SECURe”.</p>

Author(s):  
G. Severino ◽  
D. M. Tartakovsky ◽  
G. Srinivasan ◽  
H. Viswanathan

We consider multi-component reactive transport in heterogeneous porous media with uncertain hydraulic and chemical properties. This parametric uncertainty is quantified by treating relevant flow and transport parameters as random fields, which renders the governing equations stochastic. We adopt a stochastic Lagrangian framework to replace a three-dimensional advection–reaction transport equation with a one-dimensional equation for solute travel times. We derive approximate expressions for breakthrough curves and their temporal moments. To illustrate our general theory, we consider advective transport of dissolved species undergoing an irreversible bimolecular reaction.


2021 ◽  
Vol 13 (3) ◽  
pp. 402
Author(s):  
Pablo Rodríguez-Gonzálvez ◽  
Manuel Rodríguez-Martín

The thermography as a methodology to quantitative data acquisition is not usually addressed in the degrees of university programs. The present manuscript proposes a novel approach for the acquisition of advanced competences in engineering courses associated with the use of thermographic images via free/open-source software solutions. This strategy is established from a research based on the statistical and three-dimensional visualization techniques over thermographic imagery to improve the interpretation and comprehension of the different sources of error affecting the measurements and, thereby, the conclusions and analysis arising from them. The novelty is focused on the detection of non-normalities in thermographic images, which is illustrates in the experimental section. Additionally, the specific workflow for the generation of learning material related with this aim is raised for asynchronous and e-learning programs. These virtual materials can be easily deployed in an institutional learning management system, allowing the students to work with the models by means of free/open-source solutions easily. Subsequently, the present approach will give new tools to improve the application of professional techniques, will improve the students’ critical sense to know how to interpret the uncertainties in thermography using a single thermographic image, therefore they will be better prepared to face future challenges with more critical thinking.


2016 ◽  
Vol 9 (11) ◽  
pp. 4071-4085 ◽  
Author(s):  
Esteban Acevedo-Trejos ◽  
Gunnar Brandt ◽  
S. Lan Smith ◽  
Agostino Merico

Abstract. Biodiversity is one of the key mechanisms that facilitate the adaptive response of planktonic communities to a fluctuating environment. How to allow for such a flexible response in marine ecosystem models is, however, not entirely clear. One particular way is to resolve the natural complexity of phytoplankton communities by explicitly incorporating a large number of species or plankton functional types. Alternatively, models of aggregate community properties focus on macroecological quantities such as total biomass, mean trait, and trait variance (or functional trait diversity), thus reducing the observed natural complexity to a few mathematical expressions. We developed the PhytoSFDM modelling tool, which can resolve species discretely and can capture aggregate community properties. The tool also provides a set of methods for treating diversity under realistic oceanographic settings. This model is coded in Python and is distributed as open-source software. PhytoSFDM is implemented in a zero-dimensional physical scheme and can be applied to any location of the global ocean. We show that aggregate community models reduce computational complexity while preserving relevant macroecological features of phytoplankton communities. Compared to species-explicit models, aggregate models are more manageable in terms of number of equations and have faster computational times. Further developments of this tool should address the caveats associated with the assumptions of aggregate community models and about implementations into spatially resolved physical settings (one-dimensional and three-dimensional). With PhytoSFDM we embrace the idea of promoting open-source software and encourage scientists to build on this modelling tool to further improve our understanding of the role that biodiversity plays in shaping marine ecosystems.


Inventions ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 78 ◽  
Author(s):  
Aubrey Woern ◽  
Joshua Pearce

Although distributed additive manufacturing can provide high returns on investment, the current markup on commercial filament over base polymers limits deployment. These cost barriers can be surmounted by eliminating the entire process of fusing filament by three-dimensional (3-D) printing products directly from polymer granules. Fused granular fabrication (FGF) (or fused particle fabrication (FPF)) is being held back in part by the accessibility of low-cost pelletizers and choppers. An open-source 3-D printable invention disclosed here allows for precisely controlled pelletizing of both single thermopolymers as well as composites for 3-D printing. The system is designed, built, and tested for its ability to provide high-tolerance thermopolymer pellets with a number of sizes capable of being used in an FGF printer. In addition, the chopping pelletizer is tested for its ability to chop multi-materials simultaneously for color mixing and composite fabrication as well as precise fractional measuring back to filament. The US$185 open-source 3-D printable pelletizer chopper system was successfully fabricated and has a 0.5 kg/h throughput with one motor, and 1.0 kg/h throughput with two motors using only 0.24 kWh/kg during the chopping process. Pellets were successfully printed directly via FGF as well as indirectly after being converted into high-tolerance filament in a recyclebot.


Sign in / Sign up

Export Citation Format

Share Document