A machine learning approach for Greenland ice sheet altimetric mass balance

Author(s):  
Sebastian B. Simonsen ◽  
Valentina R. Barletta ◽  
William Colgan ◽  
Louise Sandberg Sørensen

<p>Satellite altimeters have monitored the surface elevation change of the Greenland ice sheet since 1978 and with an ice-sheet wide coverage since 1991. The satellite altimeters of interest for Greenland mass balance studies operate at different wavelengths; Ku-band radar, Ka-band radar, infrared laser, and visible laser. Some of the applied wavelengths can penetrate the surface in snow-covered regions and map the elevation change of subsurface layers. Especially the longer radar wavelength can penetrate the upper meters of the snow cover, whereas the infrared laser measurements from ICESat observes the snow-air interface of ice sheets. The pure surface elevation change derived from ICESat has been widely used in mass balance studies and may provide a benchmark for altimetric mass balance estimates after being corrected for changes in the firn-air content. The Ku-band radar observation provides the longest time series of ice sheet volume change, but the record is more difficult to convert into mass balance due to climate-induced variations in the surface penetration.</p><p>Here, we apply machine learning to build an empirical calibration method for converting the observed radar-derived volume change into mass balance. We train the machine learning model during the limited period of coinciding laser and radar satellite altimetry data (2003-2009). The radar and laser datasets are not sufficient to guide the empirical calibration alone. Hence, additional datasets are used to help build a stable predictor needed for radar calibration, such as ice velocity.  </p><p>We focus on the lessons learned from this machine learning approach but also highlight results from the resulting 28-yearlong time series of Greenland ice sheet mass balance. For example, the Greenland Ice Sheet contribution to global sea-level rise has been 12.1±2.3 mm since 1992, with more than 80% of this originating after 2003.</p>

2019 ◽  
Vol 11 (20) ◽  
pp. 2405
Author(s):  
Matthew Cooper ◽  
Laurence Smith

The Greenland Ice Sheet is now the largest land ice contributor to global sea level rise, largely driven by increased surface meltwater runoff from the ablation zone, i.e., areas of the ice sheet where annual mass losses exceed gains. This small but critically important area of the ice sheet has expanded in size by ~50% since the early 1960s, and satellite remote sensing is a powerful tool for monitoring the physical processes that influence its surface mass balance. This review synthesizes key remote sensing methods and scientific findings from satellite remote sensing of the Greenland Ice Sheet ablation zone, covering progress in (1) radar altimetry, (2) laser (lidar) altimetry, (3) gravimetry, (4) multispectral optical imagery, and (5) microwave and thermal imagery. Physical characteristics and quantities examined include surface elevation change, gravimetric mass balance, reflectance, albedo, and mapping of surface melt extent and glaciological facies and zones. The review concludes that future progress will benefit most from methods that combine multi-sensor, multi-wavelength, and cross-platform datasets designed to discriminate the widely varying surface processes in the ablation zone. Specific examples include fusing laser altimetry, radar altimetry, and optical stereophotogrammetry to enhance spatial measurement density, cross-validate surface elevation change, and diagnose radar elevation bias; employing dual-frequency radar, microwave scatterometry, or combining radar and laser altimetry to map seasonal snow depth; fusing optical imagery, radar imagery, and microwave scatterometry to discriminate between snow, liquid water, refrozen meltwater, and bare ice near the equilibrium line altitude; combining optical reflectance with laser altimetry to map supraglacial lake, stream, and crevasse bathymetry; and monitoring the inland migration of snowlines, surface melt extent, and supraglacial hydrologic features.


Author(s):  
Matthew G. Cooper ◽  
Laurence C. Smith

The Greenland Ice Sheet is now the largest land ice contributor to global sea level rise, largely driven by increased surface meltwater runoff from the ablation zone, i.e. areas of the ice sheet where annual mass losses exceed gains. This small but critically important area of the ice sheet has expanded in size by ~50% since the early 1960s, and satellite remote sensing is a powerful tool for monitoring the physical processes that influence its surface mass balance. This review synthesizes key remote sensing methods and scientific findings from satellite remote sensing of the Greenland Ice Sheet ablation zone, covering progress in 1) radar altimetry, 2) laser (lidar) altimetry, 3) gravimetry, 4) multispectral optical imagery and, 5) microwave and thermal imagery. Physical characteristics and quantities examined include surface elevation change, gravimetric mass balance, reflectance, albedo, and mapping of surface melt extent and glaciological facies and zones. The review concludes that future progress will benefit most from methods that combine multi-sensor, multi-wavelength, and cross-platform datasets designed to discriminate the widely varying surface processes in the ablation zone. Specific examples include fusing laser altimetry, radar altimetry, and optical stereophotogrammetry to enhance spatial measurement density, cross-validate surface elevation change, and diagnose radar elevation bias; fusing optical imagery, radar imagery, and microwave scatterometry to discriminate between snow, liquid water, refrozen meltwater, and bare ice near the equilibrium line altitude; combining optical reflectance with laser altimetry to map supraglacial lake, stream, and crevasse bathymetry; and monitoring the inland migration of snowlines, surface melt extent, and supraglacial hydrologic features.


2011 ◽  
Vol 52 (59) ◽  
pp. 1-7 ◽  
Author(s):  
Jun Li ◽  
H. Jay Zwally

AbstractChanges in ice-sheet surface elevation are caused by a combination of ice-dynamic imbalance, ablation, temporal variations in accumulation rate, firn compaction and underlying bedrock motion. Thus, deriving the rate of ice-sheet mass change from measured surface elevation change requires information on the rate of firn compaction and bedrock motion, which do not involve changes in mass, and requires an appropriate firn density to associate with elevation changes induced by recent accumulation rate variability. We use a 25 year record of surface temperature and a parameterization for accumulation change as a function of temperature to drive a firn compaction model. We apply this formulation to ICESat measurements of surface elevation change at three locations on the Greenland ice sheet in order to separate the accumulation-driven changes from the ice-dynamic/ablation-driven changes, and thus to derive the corresponding mass change. Our calculated densities for the accumulation-driven changes range from 410 to 610 kgm–3, which along with 900 kgm–3 for the dynamic/ablation-driven changes gives average densities ranging from 680 to 790 kgm–3. We show that using an average (or ‘effective’) density to convert elevation change to mass change is not valid where the accumulation and the dynamic elevation changes are of opposite sign.


2015 ◽  
Vol 9 (6) ◽  
pp. 2009-2025 ◽  
Author(s):  
P. Kuipers Munneke ◽  
S. R. M. Ligtenberg ◽  
B. P. Y. Noël ◽  
I. M. Howat ◽  
J. E. Box ◽  
...  

Abstract. Observed changes in the surface elevation of the Greenland Ice Sheet are caused by ice dynamics, basal elevation change, basal melt, surface mass balance (SMB) variability, and by compaction of the overlying firn. The last two contributions are quantified here using a firn model that includes compaction, meltwater percolation, and refreezing. The model is forced with surface mass fluxes and temperature from a regional climate model for the period 1960–2014. The model results agree with observations of surface density, density profiles from 62 firn cores, and altimetric observations from regions where ice-dynamical surface height changes are likely small. In areas with strong surface melt, the firn model overestimates density. We find that the firn layer in the high interior is generally thickening slowly (1–5 cm yr−1). In the percolation and ablation areas, firn and SMB processes account for a surface elevation lowering of up to 20–50 cm yr−1. Most of this firn-induced marginal thinning is caused by an increase in melt since the mid-1990s and partly compensated by an increase in the accumulation of fresh snow around most of the ice sheet. The total firn and ice volume change between 1980 and 2014 is estimated at −3295 ± 1030 km3 due to firn and SMB changes, corresponding to an ice-sheet average thinning of 1.96 ± 0.61 m. Most of this volume decrease occurred after 1995. The computed changes in surface elevation can be used to partition altimetrically observed volume change into surface mass balance and ice-dynamically related mass changes.


2021 ◽  
Author(s):  
Inès Otosaka ◽  
Andrew Shepherd ◽  
Andreas Groh

<p>About a third of Greenland’s total ice losses come from the Northwest sector, a sector that includes a large number of marine-terminating outlet glaciers, which have all experienced widespread retreat triggered by ocean-induced melting. Here, we derive changes in surface elevation, volume and mass in the Northwest sector of the Greenland Ice Sheet using a decade of CryoSat-2 observations. We find an average elevation change rate of 18.7 ± 0.4 cm/yr, with rapid thinning at the ice sheet margins at a rate of 42.7 ± 0.9 cm/yr. We compare our CryoSat-2 rates of elevation change to airborne laser altimetry data from Operation IceBridge. Overall, there is a good agreement between the two datasets with a mean difference of 6.5 ± 0.5 cm/yr and standard deviation of 31.1 cm/yr. We further compute volume change, which we convert to mass change by testing three alternate density models and we find that the northwest sector has lost 386 ± 3.7 Gt of ice between July 2010 and July 2019. We compare our mass balance estimate to independent estimates from gravimetry and the mass budget method across different spatial scales. First, we compare the different estimates by splitting the sector into two and four regions. While our altimetry estimate is the least negative across all regions, the gravimetry and mass budget estimates alternate in recording the largest ice losses. We further compare mass changes derived from altimetry and the mass budget method in each of the 74 individual glacier basins of the Northwest sector. We find a high correlation of 0.81 between rates of mass change from altimetry and the mass budget method, with the highest differences recorded in Steenstrup-Dietrichson and Kjer Gletscher basins. Our comparisons show that the spatial pattern of the differences between mass balance estimates is complex, suggesting that discrepancies between techniques do not solely originate from one single region or technique. Finally, we explore several factors that could potentially bias our altimetry mass balance estimation, by investigating differences between satellite radar and airborne laser altimetry, the dependency on grid spatial resolution and the impact of using different density models.</p>


2015 ◽  
Vol 9 (3) ◽  
pp. 3541-3580 ◽  
Author(s):  
P. Kuipers Munneke ◽  
S. R. M. Ligtenberg ◽  
B. P. Y. Noël ◽  
I. M. Howat ◽  
J. E. Box ◽  
...  

Abstract. Observed changes in the surface elevation of the Greenland ice sheet are caused by ice dynamics, basal elevation change, surface mass balance (SMB) variability, and by compaction of the overlying firn. The latter two contributions are quantified here using a firn model that includes compaction, meltwater percolation, and refreezing. The model is forced with surface mass fluxes and temperature from a regional climate model for the period 1960–2013. The model results agree with observations of surface density, density profiles from 62 firn cores, and altimetric observations from regions where ice-dynamical surface height changes are likely small. We find that the firn layer in the high interior is generally thickening slowly (1–5 cm yr−1). In the percolation and ablation areas, firn and SMB processes account for a surface elevation lowering of up to 20–50 cm yr−1. Most of this firn-induced marginal thinning is caused by an increase in melt since the mid-1990s, and partly compensated by an increase in the accumulation of fresh snow around most of the ice sheet. The total firn and ice volume change between 1980 and 2013 is estimated at −3900 ± 1030 km3 due to firn and SMB, corresponding to an ice-sheet average thinning of 2.32 ± 0.61 m. Most of this volume decrease occurred after 1995. The computed changes in surface elevation can be used to partition altimetrically observed volume change into surface mass balance and ice-dynamically related mass changes.


Sign in / Sign up

Export Citation Format

Share Document