Assimilating sea ice deformation observations using a multiscale alignment ensemble data assimilation method

Author(s):  
Yue Ying ◽  
Laurent Bertino

<p>A multiscale alignment (MSA) method was proposed by Ying (2019) for ensemble data assimilation to reduce the errors caused by displacement of coherent features. The MSA method decomposes a model state into components ranging from large to small spatial scales, then applies ensemble filters to update each scale component sequentially. After a larger scale component analysis increment is derived from the observations, displacement vectors are computed from the analysis increments through an optical flow algorithm. These displacement vectors are then used to warp the model mesh, which reduces position errors in the smaller scale components before the ensemble filter is applied again.</p><p>The MSA method is now applied to a sea ice prediction problem at NERSC to assimilate satellite-derived sea ice deformation observations into the next generation Sea Ice Model (neXtSIM) simulations. Preliminary results show that the MSA can more effectively reduce the position errors of the linear kinematic features of sea ice than the traditional ensemble Kalman filter. The alignment step is shown to be a big contributor for error reduction in our test case. We will also discuss the remaining challenges of tuning parameters in the MSA method and dealing with model deficiencies.</p>

2021 ◽  
Author(s):  
Bertrand Cluzet ◽  
Matthieu Lafaysse ◽  
César Deschamps-Berger ◽  
Matthieu Vernay ◽  
Marie Dumont

Abstract. The mountainous snow cover is highly variable at all temporal and spatial scales. Snowpack models only imperfectly represent this variability, because of uncertain meteorological inputs, physical parameterisations, and unresolved terrain features. In-situ observations of the height of snow (HS), despite their limited representativeness, could help constrain intermediate and large scale modelling errors by means of data assimilation. In this work, we assimilate HS observations from an in-situ network of 295 stations covering the French Alps, Pyrenees and Andorra, over the period 2009–2019. In view of assimilating such observations into a spatialised snow cover modelling framework, we investigate whether such observations can be used to correct neighbouring snowpack simulations. We use CrocO, an ensemble data assimilation framework of snow cover modelling, based on a Particle Filter suited to the propagation of information from observed to unobserved areas. This ensemble system already benefits from meteorological observations, assimilated within SAFRAN analysis scheme. CrocO also proposes various localisation strategies to assimilate snow observations. These approaches are evaluated in a Leave-One-Out setup against the operational deterministic model and its ensemble open-loop counterpart, both running without HS assimilation. Results show that intermediate localisation radius of 35–50 km yield a slightly lower root mean square error (RMSE), and a better Spread-Skill than the strategy assimilating all the observations from a whole mountain range. Significant continuous ranked probability score (CRPS) improvements of about 13 % are obtained in the areas where the open-loop modelling errors are the largest, e.g. the Haute-Ariège, Andorra and the Extreme Southern Alps. Over these areas, weather station observations are generally sparser, resulting in more uncertain meteorological analyses, and therefore snow simulations. In-situ HS observations thus shows an interesting complementarity with meteorological observations to better constrain snow cover simulations over large areas.


Author(s):  
M. Zupanski ◽  
S. J. Fletcher ◽  
I. M. Navon ◽  
B. Uzunoglu ◽  
R. P. Heikes ◽  
...  

2021 ◽  
Vol 25 (3) ◽  
pp. 931-944
Author(s):  
Johann M. Lacerda ◽  
Alexandre A. Emerick ◽  
Adolfo P. Pires

2005 ◽  
Vol 133 (6) ◽  
pp. 1710-1726 ◽  
Author(s):  
Milija Zupanski

Abstract A new ensemble-based data assimilation method, named the maximum likelihood ensemble filter (MLEF), is presented. The analysis solution maximizes the likelihood of the posterior probability distribution, obtained by minimization of a cost function that depends on a general nonlinear observation operator. The MLEF belongs to the class of deterministic ensemble filters, since no perturbed observations are employed. As in variational and ensemble data assimilation methods, the cost function is derived using a Gaussian probability density function framework. Like other ensemble data assimilation algorithms, the MLEF produces an estimate of the analysis uncertainty (e.g., analysis error covariance). In addition to the common use of ensembles in calculation of the forecast error covariance, the ensembles in MLEF are exploited to efficiently calculate the Hessian preconditioning and the gradient of the cost function. A sufficient number of iterative minimization steps is 2–3, because of superior Hessian preconditioning. The MLEF method is well suited for use with highly nonlinear observation operators, for a small additional computational cost of minimization. The consistent treatment of nonlinear observation operators through optimization is an advantage of the MLEF over other ensemble data assimilation algorithms. The cost of MLEF is comparable to the cost of existing ensemble Kalman filter algorithms. The method is directly applicable to most complex forecast models and observation operators. In this paper, the MLEF method is applied to data assimilation with the one-dimensional Korteweg–de Vries–Burgers equation. The tested observation operator is quadratic, in order to make the assimilation problem more challenging. The results illustrate the stability of the MLEF performance, as well as the benefit of the cost function minimization. The improvement is noted in terms of the rms error, as well as the analysis error covariance. The statistics of innovation vectors (observation minus forecast) also indicate a stable performance of the MLEF algorithm. Additional experiments suggest the amplified benefit of targeted observations in ensemble data assimilation.


2014 ◽  
Vol 142 (2) ◽  
pp. 716-738 ◽  
Author(s):  
Craig S. Schwartz ◽  
Zhiquan Liu

Abstract Analyses with 20-km horizontal grid spacing were produced from parallel continuously cycling three-dimensional variational (3DVAR), ensemble square root Kalman filter (EnSRF), and “hybrid” variational–ensemble data assimilation (DA) systems between 0000 UTC 6 May and 0000 UTC 21 June 2011 over a domain spanning the contiguous United States. Beginning 9 May, the 0000 UTC analyses initialized 36-h Weather Research and Forecasting Model (WRF) forecasts containing a large convection-permitting 4-km nest. These 4-km 3DVAR-, EnSRF-, and hybrid-initialized forecasts were compared to benchmark WRF forecasts initialized by interpolating 0000 UTC Global Forecast System (GFS) analyses onto the computational domain. While important differences regarding mean state characteristics of the 20-km DA systems were noted, verification efforts focused on the 4-km precipitation forecasts. The 3DVAR-, hybrid-, and EnSRF-initialized 4-km precipitation forecasts performed similarly regarding general precipitation characteristics, such as timing of the diurnal cycle, and all three forecast sets had high precipitation biases at heavier rainfall rates. However, meaningful differences emerged regarding precipitation placement as quantified by the fractions skill score. For most forecast hours, the hybrid-initialized 4-km precipitation forecasts were better than the EnSRF-, 3DVAR-, and GFS-initialized forecasts, and the improvement was often statistically significant at the 95th percentile. These results demonstrate the potential of limited-area continuously cycling hybrid DA configurations and suggest additional hybrid development is warranted.


2005 ◽  
Vol 133 (12) ◽  
pp. 3431-3449 ◽  
Author(s):  
D. M. Barker

Abstract Ensemble data assimilation systems incorporate observations into numerical models via solution of the Kalman filter update equations, and estimates of forecast error covariances derived from ensembles of model integrations. In this paper, a particular algorithm, the ensemble square root filter (EnSRF), is tested in a limited-area, polar numerical weather prediction (NWP) model: the Antarctic Mesoscale Prediction System (AMPS). For application in the real-time AMPS, the number of model integrations that can be run to provide forecast error covariances is limited, resulting in an ensemble sampling error that degrades the analysis fit to observations. In this work, multivariate, climatologically plausible forecast error covariances are specified via averaged forecast difference statistics. Ensemble representations of the “true” forecast errors, created using randomized control variables of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) three-dimensional variational (3DVAR) data assimilation system, are then used to assess the dependence of sampling error on ensemble size, data density, and localization of covariances using simulated observation networks. Results highlight the detrimental impact of ensemble sampling error on the analysis increment structure of correlated, but unobserved fields—an issue not addressed by the spatial covariance localization techniques used to date. A 12-hourly cycling EnSRF/AMPS assimilation/forecast system is tested for a two-week period in December 2002 using real, conventional (surface, rawinsonde, satellite retrieval) observations. The dependence of forecast scores on methods used to maintain ensemble spread and the inclusion of perturbations to lateral boundary conditions are studied.


2011 ◽  
Vol 46 (1) ◽  
pp. 493-497 ◽  
Author(s):  
S. Vetra-Carvalho ◽  
S. Migliorini ◽  
N.K. Nichols

Author(s):  
Takemasa Miyoshi ◽  
Shunji Kotsuki ◽  
Koji Terasaki ◽  
Shigenori Otsuka ◽  
Guo-Yuan Lien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document