Evidence for contemporaneous Deccan volcanic aerosol deposition preceding the K-Pg boundary at El Kef, Tunisia

Author(s):  
Steffanie Sillitoe-Kukas ◽  
Munir Humayun ◽  
Thierry Adatte ◽  
Gerta Keller

<p>The cause of the Cretaceous-Paleogene extinction remains debated between an asteroid impact and volcanism. Precise geochronology showed that the extinction coincided with a voluminous phase (Poladpur eruption) of Deccan volcanism (Schoene et al., 2019). Paleontological evidence indicates that microfossil diversity declined about 300,000 years before the K-Pg boundary, synchronous with the onset of Deccan volcanism (Keller et al. 2009). High concentrations of Ir in the K-Pg boundary supported the asteroid hypothesis but recent work indicates that siderophile accumulation at the K-Pg in El Kef is secondary (Humayun et al., this conf.). Here, we critically examine existing element data for the K-Pg boundary and examine new results at the El Kef site, Tunisia, for volcanogenic volatile element accumulation associated with the contemporaneous Deccan eruptions. In this study, we analyzed 60 elements by laser ablation ICP-MS in search of these volcanic aerosol enrichments in the K-Pg sediments at El Kef, Tunisia. A study of siderophile element distribution at global K-Pg sites found that the Ru/Ir ratio is sub-chondritic. Mixing of upper continental crust (Ru/Ir> CI) with a chondritic impactor fails to explain this trend. Volcanic aerosol emissions for Ir are well known but there is less data available for Ru. Relative emission rates of Ru were found to be lower than those of Ir for the Kudryavy volcano (Yudovskaya et al., 2008), so a possible explanation of the sub-chondritic Ru/Ir ratio observed in global K-Pg sites involves deposition of volcanic aerosols in sediments. We also modeled the effect of adding volcanic aerosols to sediments approximated compositionally as upper continental crust (UCC) to find that Re, Cd, Os and Ir are the first elements to become enriched in sediments by volcanogenic aerosol deposition. Sediments from El Kef below the K-Pg boundary are enriched in both Re and Cd. On a plot of Cd vs. Re, the K-Pg sediment from El Kef falls on a mixing line between volcanic aerosol (Erta Ale volcano) and UCC. Sediment at 3 cm above the K-Pg boundary has little enrichment of either Cd or Re, interpreted here to indicate that this sediment was deposited in the interlude between the Poladpur and the Ambenali eruption phases of the Deccan. The availability of chemical proxies of volcanogenic aerosol deposition in sediments enables direct correlation between fossil evidence and the contemporaneous intensity of volcanic outgassing, the likely destroyer of life by the Deccan eruptions (Keller et al., 2020).</p>

1997 ◽  
Vol 102 (B8) ◽  
pp. 18233-18254 ◽  
Author(s):  
P. Möller ◽  
S. M. Weise ◽  
E. Althaus ◽  
W. Bach ◽  
H. J. Behr ◽  
...  

2013 ◽  
Vol 109 ◽  
pp. 384-399 ◽  
Author(s):  
Paul S. Savage ◽  
R. Bastian Georg ◽  
Helen M. Williams ◽  
Alex N. Halliday

2021 ◽  
Author(s):  
Shengyu Tian ◽  
Frédéric Moynier ◽  
Edward Inglis ◽  
Roberta L. Rudnick ◽  
Fang Huang ◽  
...  

Author(s):  
Eduardo Cerecedo-Sáenz ◽  
Ventura Rodríguez-Lugo ◽  
Juan Hernández-Ávila ◽  
Demetrio Mendoza-Anaya ◽  
Ma. Isabel Reyes-Valderrama ◽  
...  

This work shows the preliminary description of the origin of a sedimentary - exhalative outcrop of Jurassic Lower Pliensbachian. The location of this deposit was achieved by applying an examination based in the identification of sedimentary transgressions of heterochronies ages and the identification of a Rift – type mega –structure. According with the methodology, it was carried out a study of the discordant relationships between two types of sediments: continental and marine. According the characterization, it was noted the existence of light rare earths, in values that show positive anomalies in comparison with the distribution of elements in upper continental crust according to the Clarke [1], reflecting so a felsic affinity of the mineral deposit. Also, positive anomalies of platinum and Pd, were determined with marginal contents of Au and Ag; and finally the base metals Zn, Pb and Cu were detected in low contents, which could be due to the presence of altered shale. According to the sedimentary lithology found, which was of siliciclastic type; to the exhalative roots observed during the fieldwork; the presence of quartz minerals such as biotite and muscovite; the presence of minerals of hydrothermal remobilization like chalcopyrite with some base metals, altered shale, as well as sulfur deficiency; this mineral reservoir could be defined as a SEDEX – type.


2004 ◽  
Vol 68 (20) ◽  
pp. 4167-4178 ◽  
Author(s):  
F.-Z. Teng ◽  
W.F. McDonough ◽  
R.L. Rudnick ◽  
C. Dalpé ◽  
P.B. Tomascak ◽  
...  

Author(s):  
Neil A Fernandes ◽  
Gema R. Olivo ◽  
Daniel Layton-Matthews ◽  
Alexandre Voinot ◽  
Donald Chipley ◽  
...  

ABSTRACT Different types of sediment-hosted whole-rock Pb isotope (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) compositions were determined from phyllites, carbonaceous phyllites (>1% TOC), and meta-litharenites belonging to the Serra do Garrote Formation, which is part of the Proterozoic Vazante Group, Brazil. Results were integrated with lithogeochemistry in order to identify the Pb isotopic signature of Zn enrichment (up to 0.24 wt.% Zn) associated with meta-siliciclastic-hosted sulfide mineralization that formed prior to the Brasiliano Orogeny (850 to 550 Ma) in order to (1) understand the nature of siliciclastic sediment sources, (2) identify possible metal sources in pre-orogenic meta-siliciclastic-hosted Zn mineralization, and (3) evaluate the genetic links between the Zn enrichment in the relatively reduced phyllite package, and different styles of syn-orogenic Zn ± Pb mineralization (hypogene Zn-silicate and Zn-Pb sulfide) in overlying dolomitic carbonates throughout the Vazante-Paracatu Zn District, Brazil. The whole-rock 206Pb/204Pb and 207Pb/204Pb isotope ratios of meta-siliciclastic rocks plot as positively sloping, sub-parallel arrays with radiogenic, upper continental crust compositions, which could represent a detrital contribution from at least two upper continental crust sources. However, the 206Pb/204Pb versus 207Pb/204Pb isotope system does not distinguish between Zn-enriched samples and un-mineralized samples. In the whole-rock 206Pb/204Pb–208Pb/204Pb plot, Zn-enriched samples form a flat trend of lower 208Pb/204Pb values (38.3 to 39.5) compared to the Zn-poor ones that follow common upper crustal trends. Zinc-enriched samples have low whole-rock Th/U values (<4) and higher whole-rock U concentrations compared to unmineralized samples. These support the hypothesis that U (± Pb) was added by pre-orogenic metalliferous fluids, which were in turn derived from underlying Paleoproterozoic and Archean basement rocks. Due to U addition, the original whole-rock thorogenic and uranogenic Pb isotope systems were decoupled in mineralized samples. Pre-orogenic metalliferous fluids have similar present-day first-order characteristics, including: (1) relatively high U/Pb and (2) low Th/U values, when compared to galena in the major carbonate-hosted Zn ± Pb deposits (Vazante, Morro Agudo, Ambrosia, Fagundes) in the Vazante Group. These results support the hypothesis that Zn-rich layers and veins in mineralized carbonaceous phyllites could be linked to the same origins as carbonate-hosted mineral deposits throughout the Vazante Basin, but further data are warranted. We suggest that the tectonic evolution of the Vazante Basin saw multiple phases of Zn-rich mineralization over protracted time periods from around 1200 to 550 Ma.


2021 ◽  
pp. 127-142
Author(s):  
V.P. Shevchenko ◽  
◽  
L.P. Golobokova ◽  
S.M. Sakerin ◽  
A.P. Lisitzin ◽  
...  

The concentration and composition of aerosols in the atmosphere over the Barents Sea were studied. Earlier, the contribution of aerosols to the formation of the Arctic environment was underestimated. Our data indicated a noticeable effect of continental aerosol on the atmosphere of the Barents Sea. The relationship of the black carbon concentration and the type of air masses has been established. Its concentration increases hundreds of times in the atmosphere of the sea when continental air is removed. The ionic composition and the content of chemical elements in the insoluble fraction of aerosols of the air over the Barents Sea were studied. The content of most chemical elements (Na, Al, K, Ca, Sc, Fe, Co, Rb, Zr, Cs, Ba, REE, Hf, Ta, Th, U) in the insoluble fraction of aerosols was below the average values for the upper continental crust. The content of Cr, Cu, Zn, As, Se, Br, Ag, Sb, Au, Pb is significantly higher than their average for the upper continental crust, due to the influence of the anthroposphere. Probable sources of anthropogenic pollution of aerosols in the Arctic are discussed.


2018 ◽  
Vol 494 ◽  
pp. 144-152 ◽  
Author(s):  
A. Mundl ◽  
R.J. Walker ◽  
J.R. Reimink ◽  
R.L. Rudnick ◽  
R.M. Gaschnig

2015 ◽  
Vol 428 ◽  
pp. 181-192 ◽  
Author(s):  
Lucie Sauzéat ◽  
Roberta L. Rudnick ◽  
Catherine Chauvel ◽  
Marion Garçon ◽  
Ming Tang

Sign in / Sign up

Export Citation Format

Share Document