hydrothermal remobilization
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 9)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
Manuel Scharrer ◽  
Tatjana Epp ◽  
Benjamin Walter ◽  
Katharina Pfaff ◽  
Torsten Vennemann ◽  
...  

AbstractUnusual hydrothermal native As-sulfide ± native Ag ± arsenide ± antimonide ± sulfosalt ore shoots and their co-genetic sulfide-fluorite-barite-quartz host veins, which are common in the region and in whole Central Europe, were investigated at three localities in the Schwarzwald, SW Germany, to understand the physico-chemical processes governing the change from a normal (= common) hydrothermal to an exceptional ore shoot regime. Based on fluid inclusions, the formation of the gangue minerals is the result of binary mixing between a NaCl-rich brine and a CaCl2-rich brine (both ~ 20 wt% NaCl aq.). This mixing correlation, major and minor fluid composition, formation temperature (~ 150 °C), and δ34S signature are identical (within error) in ore shoots and host veins. Thermodynamic modeling indicates that ore shoot formation must have resulted from a change in redox conditions by a local influx of a volumetrically minor reducing agent, probably hydrocarbons. The elemental content and the mineralogy of each ore shoot locality (Ag-As-rich: Münstertal; Ag–Ni-As-rich: Urberg; Ag–Ni-As-Sb-rich: Wieden) reflect the metal content of the binary mixed fluid, while mineral textures, successions, and assemblages are thermodynamically and, regarding sulfur, kinetically controlled. The formation of vein and ore shoot sulfides requires an addition of sulfide, most probably from the sulfide-bearing host rocks, because thermodynamic and kinetic reasons suggest that the two major vein-forming and metal-bearing fluids are not the source of the sulfur. The final ore shoot textures are influenced by later hydrothermal remobilization processes of As and Ag. This results in a number of sulfosalts, mostly proustite-pyrargyrite. Interestingly, the greater thermodynamic stability of Sb-endmember sulfosalts enables them to form even in As-dominated fluid systems.


2021 ◽  
Author(s):  
Marie Guilcher ◽  
Anna Schmaucks ◽  
Joachim Krause ◽  
Gregor Markl ◽  
Jens Gutzmer ◽  
...  

Abstract The Annaberg-Buchholz district is a classic occurrence of hydrothermal five-element (U-Ag-Bi-Co-Ni-As) veins in the Erzgebirge (Germany) with an historic production of ~8,700 metric tons (t) Co ore, 496 t U ore, and 26.9 t Ag. Multiple mineralization stages are recognized in polyphase veins hosted by Proterozoic paragneiss. Fluorite-barite-Pb-Zn mineralization occurs across the entire vertical profile of the district, whereas U and five-element stages are restricted to the upper 400 m below surface, coinciding with a graphite-rich gneiss lithology. Here, we present field and petrographic observations, electron probe microanalysis and fluid inclusion data, as well as thermodynamic calculations to characterize five-element and fluorite-barite-Pb-Zn associations, and to constrain the origin of the vertical zoning in the Annaberg-Buchholz district. Microthermometric analyses of fluid inclusions related to the fluorite-barite-Pb-Zn stage yield homogenization temperatures between 78° and 140°C and salinities between 21.9 and 27.7 equiv wt % (NaCl-CaCl2). A correlation of fluid inclusion Na/(Na + Ca) ratios with salinity suggests fluid mixing as a likely precipitation mechanism and relates ore formation tentatively to regional tectonics of the Mesozoic opening of the Atlantic. Thermodynamic calculations indicate that U is more sensitive to reduction than As, predicting that arsenide minerals are precipitated more distally relative to uraninite upon reduction along the fluid-flow path. This implies that the observed vertical zoning is not a primary feature but is the result of hydrothermal remobilization. The observations made in the Annaberg-Buchholz district have general importance to the understanding of U-rich five-element mineralization and may be relevant for exploration targeting in unconformity-related U deposits.


2021 ◽  
Vol 6 (1) ◽  
pp. 28
Author(s):  
Ian T. Graham ◽  
Adam McKinnon ◽  
Khalid Schellen ◽  
Angela Lay ◽  
Elizabeth Liepa ◽  
...  

The Hera Au-Ag-Pb-Zn deposit of central New South Wales, Australia with a total undepleted resource of 3.6 Mt @ 3.3 g/t Au, 25 g/t Ag, 2.6% Pb and 3.8% Zn occurs on the SE margin of the Cobar Basin. It is hosted by the shallow marine Mouramba Group and overlying turbiditic Amphitheatre Group. The siltstones comprise various mixtures of quartz, plagioclase, muscovite-phengite, biotite and clinochlore, along with accessory titanite and ilmenite. The deposit comprises a number of discrete lodes which are steeply west-dipping and strike NNW. Each lode has different abundances of the main ore minerals sphalerite, galena, chalcopyrite, pyrrhotite and electrum-gold. The North Pod and Far West lenses have the most diverse mineralogy in additionally containing arsenopyrite, native silver, gudmundite, Ag-tetrahedrite, acanthite, dyscrasite, native antimony, nisbite and breithauptite. Electrum (continuous spectrum from Ag-rich to Au-rich) is associated with sulfides in the main ore lenses while native gold occurs in the host rocks along cleavages/lineations and away from the main ore. The sulfur isotope data from across the deposit indicates a magmatic source. Most of the deposit has experienced greenschist facies metamorphism with pervasive green chlorite alteration, though the North Pod differs in being distinctly Ag- and Sb-rich and has reached at least amphibolite facies metamorphism with a garnet-wollastonite-vesuvianite-tremolite assemblage. Tremolite is relatively abundant throughout most of the deposit suggesting widespread low-T skarn alteration. Cross-cutting pegmatites comprise quartz, plagioclase (labradorite-andesine) and microcline. Hydrothermal remobilization is relatively extensive and best explains the unusual Ag-Sb-As assemblages of the North Pod and Far West lodes.


2020 ◽  
Author(s):  
Vladislav Rapprich ◽  
Tomáš Magna ◽  
Shrinivas Viladkar ◽  
Ondřej Pour ◽  
Jens Hopp ◽  
...  

Geology ◽  
2019 ◽  
Vol 47 (9) ◽  
pp. 877-880 ◽  
Author(s):  
Peishu Li ◽  
Alan E. Boudreau

Abstract We documented occurrences of native copper (Cu), silver (Ag), and gold (Au) in a pāhoehoe flow from Kīlauea volcano (Hawaii, USA), an a‘ā flow from Mauna Loa volcano (Hawaii), and a mid-oceanic-ridge basalt (MORB) from the Chile Ridge (southeastern Pacific Ocean). Native Ag in Kīlauea and MORB samples consistently contained minor Cl (<1 wt%). Native Ag in Hawaiian basalts can occur at the center of nearly circular patches of relatively evolved minerals, which presumably formed after late-stage silicate liquid infilled pipe vesicles. Sulfur loss and oxidation of a Cu-sulfide phase can explain the native Cu, but not Au and Ag deposition. The rare occurrence of native Cu-Au-Ag alloys and the large native Au and Ag grain size suggest separate metal precipitation mechanisms. A fractional crystallization and degassing model envisions initial Au and Ag enrichment in crystallizing interstitial liquid and further enrichment in a separating vapor phase. From the flow interior, the metals ascend through ephemeral pipe vesicles as bisulfide (Au) or chloride (Ag) vapor complexes and precipitate in the transition zone below the upper vesicular zone, owing to temperature and oxidation state changes. Our results support igneous vapor transport of ore elements in mafic plutonic systems and imply preconcentration of gold during lava solidification before later hydrothermal remobilization.


2019 ◽  
Vol 98 ◽  
pp. 08014
Author(s):  
Ol’ga Kiseleva ◽  
Evgeniya Airiyants ◽  
Dmytriy Belyanin ◽  
Sergey Zhmodik

Serpentinization is an important post-magmatic process in spreading and subducted zones. This process is the cause of the remobilization and redistribution of highly mobile elements, platinum group elements (PGE) and base metals. Secondary platinum group minerals (PGMs) formed because of PGE remobilization under the action of mantle and crustal fluid on the rocks. The formation of the secondary PGMs can occur in several stages. Under the effect on the chromitites of reduced mantle fluids, native PGE alloys were formed during early serpentinization. Under dehydrating subducted slab fluid phase was caused in serpentinization mantle peridotites and have been dissolved magmatic high-temperature platinum group minerals. During the obduction of ophiolites, an inversion from reducing to oxidizing condition took place with the formation of nickel arsenides and As, Sb – bearing PGMs.


Sign in / Sign up

Export Citation Format

Share Document