The Evolution of the Paleo-Danube Deltas of the Lower Pannonian in the Vienna Basin 

Author(s):  
Arthur Borzi ◽  
Werner E. Piller ◽  
Mathias Harzhauser ◽  
Wolfgang Siedl ◽  
Philipp Strauss

<p><strong>ABSTRACT</strong></p><p>The Vienna Basin is a rhombohedral SSW-NNE oriented Neogene extensional basin that formed along sinistral fault systems during Miocene lateral extrusion of the Eastern Alps. The basin fill consists of shallow marine and terrestrial sediments of early to late Miocene age reaching a thickness of 5500 m in the central part of the basin. The early Pannonian was a crucial time in the development of the Vienna Basin, as It coincided with the formation of Lake Pannon. The lake formed at 11.6 Ma when a significant regressive event isolated Lake Pannon from the Paratethys Sea, creating lacustrine depositional environments. At that time the delta of the Paleo-Danube started shedding its sediments into the central Vienna Basin. Based on an existing age model delta deposition commenced around 11.5 Ma and continued until 11.1 Ma. These subsurface deltaic deposits of the Hollabrunn-Mistelbach Formation represent the coeval fluvial deposits of the Paleo-Danube in the eastern plains of the North Alpine Foreland Basin. Therefore, the Palaeo-Danube represents an extraordinary case in where coeval fluvial and deltaic deposits of a Miocene river are continuously captured.</p><p>This study provides an interpretation of depositional architecture and depositional environments of this delta in the Austrian part of the central Vienna Basin based on the integration of 3D seismic surveys and well data. The mapped delta has an area of about 580 km<sup>2</sup>, and solely based on the geometry we classify the delta as a mostly river – dominated delta with significant influence of wave – reworking processes. For seven time slices paleogeographic maps are created, showing the interplay between the lacustrine environments of Lake Pannon, delta evolution and fluvial systems incising in the abandoned deltaplain. Onlaps between single deltalobes indicate a northward-movement of the main distributary channel. Approximate water-depth estimates are carried out with in-seismic measurements of the true vertical depth between the topset deposits of the delta and the base of the bottomset deposits. These data suggest a decrease of lake water depth from about 170 m during the initial phase of delta formation at 11.5 Ma to about 100 m during its terminal phase at 11.1 Ma. A major lake level rise of Lake Pannon around 11.1 Ma caused a flooding of the margins of the Vienna Basin, resulting in a back stepping of riverine deposits and termination of delta deposition in the study area.</p><p> </p>

2011 ◽  
Vol 62 (2) ◽  
pp. 155-169 ◽  
Author(s):  
Wieske Paulissen ◽  
Stefan Luthi ◽  
Patrick Grunert ◽  
Stjepan Ćorić ◽  
Mathias Harzhauser

Integrated high-resolution stratigraphy of a Middle to Late Miocene sedimentary sequence in the central part of the Vienna BasinIn order to determine the relative contributions of tectonics and eustasy to the sedimentary infill of the Vienna Basin a high-resolution stratigraphic record of a Middle to Late Miocene sedimentary sequence was established for a well (Spannberg-21) in the central part of the Vienna Basin. The well is located on an intrabasinal high, the Spannberg Ridge, a location that is relatively protected from local depocentre shifts. Downhole magnetostratigraphic measurements and biostratigraphical analysis form the basis for the chronostratigraphic framework. Temporal gaps in the sedimentary sequence were quantified from seismic data, well correlations and high-resolution electrical borehole images. Stratigraphic control with this integrated approach was good in the Sarmatian and Pannonian, but difficult in the Badenian. The resulting sedimentation rates show an increase towards the Upper Sarmatian from 0.43 m/kyr to > 1.2 m/kyr, followed by a decrease to relatively constant values around 0.3 m/kyr in the Pannonian. The sequence reflects the creation of accommodation space during the pull-apart phase of the basin and the subsequent slowing of the tectonic activity. The retreat of the Paratethys from the North Alpine Foreland Basin during the Early Sarmatian temporarily increased the influx of coarsergrained sediment, but eventually the basin acted mostly as a by-pass zone of sediment towards the Pannonian Basin. At a finer scale, the sequence exhibits correlations with global eustasy indicators, notably during the Sarmatian, the time of greatest basin subsidence and full connectivity with the Paratethyan system. In the Pannonian the eustatic signals become weaker due to an increased isolation of the Vienna Basin from Lake Pannon.


2020 ◽  
Vol 113 (1) ◽  
pp. 125-138
Author(s):  
Maria Meszar ◽  
Susanne Gier ◽  
Markus Palzer-Khomenko ◽  
Wolfgang Knierzinger ◽  
Michael Wagreich

AbstractRecent studies established the lithological and chemical sediment evolution in the Lower Austrian Molasse Basin (LAMB), a part of the North Alpine foreland basin, during the Early Miocene. In this study, we aim to integrate the clay mineralogy of seven wells across the LAMB with a newly proposed lithostratigraphy, and to infer implications for provenance, palaeo-geography and palaeoclimate. The results of our qualitative and quantitative evaluation of the clay-sized fraction with x-ray diffractometry largely support the stratigraphic model. The early stage of foreland basin formation (Egerian/Eggenburgian?) is represented by kaolinite contents up to 93 % in the clay sized fraction. This indicates an orogen-external source, i.e. the Bohemian Massif, and erosion of intensively chemical weathered products during this early Molasse basin stage. The over-lying marine Robulus Schlier (lower/middle Ottnangian) is characterized by a distinctly reduced kaolinite content and overall increased illite content compared to the other formations. Illite was predominantly provided from denudation of the rising Eastern Alps, i.e. characterizing the orogen-internal provenance. The pelites of the overlying carbonate poor Traisen Formation (upper Ottnangian) show again a higher kaolinite and smectite content. In the largely coeval basinal Wildendürnbach Formation, smectite reaches up to 70 % in the clay sized fraction. Peak smectite values may be linked to volcanic ash input from the nearby Carpathian volcanic arc. Generally rising smectite versus illite ratios during the Ottnangian-Karpatian could point to a warming and intensified chemical weathering of the rising Alpine orogen.


2020 ◽  
Vol 297 (1) ◽  
pp. 47-100
Author(s):  
Oleg Mandic ◽  
Simon Schneider ◽  
Mathias Harzhauser ◽  
Wolfgang Danninger

During the Ottnangian (Burdigalian, early Miocene), the North Alpine Foreland Basin operated as a sea-way connecting the Central Paratethys Sea with the Rhône Basin in the Western Mediterranean. Within this short time window, an intensive faunal exchange between the two paleo-biogeographic units occurred, which is reflected in macrofossil assemblages. The extraordinarily rich fossil record of the study site, Allerding, located in the westernmost Central Paratethys, provides valuable insights into the composition and origins of the bivalve fauna colonizing the marine gateway. The site documents the early Ottnangian marine transgression over deeply weathered crystalline basement, grading from fossil bearing shallow water clay and sand into the open marine "Schlier" facies of the Ottnang Formation. Despite considerable taphonomic overprint including aragonite leaching and mechanical abrasion of bivalve shells under turbulent shallow-water conditions, a total of 46 species are recorded, including two new species (Lima allerdingensis n. sp. and Astarte danningeri n. sp.). The dominance of suspension feeders, and the presence of several deposit feeders and chemosymbiotic taxa point to well diversified inshore settings, including low intertidal mudflats, as well as seagrass meadows. An abundance of primary and secondary hardgrounds is reflected in the high number of cementing and byssate species, as well as in the occurrence of species drilling actively into hard substrate. Finally, the dominance of active burrowers suggests a patchwork of habitats, where sandy and muddy soft bottoms occur interspersed. Biostratigraphic analysis constrains the deposits to the early to middle Ottnangian, based on the presence of the index species Flexopecten davidi and the concurrence of several taxa, which have their last or first occurrences within this interval. These are predominantly taxa persisting into the Badenian, therefore allowing for a straightforward differentiation between late Eggenburgian and early Ottnangian assemblages. While a few Central Paratethys endemics reflect a continued semi-isolated position of the area, the majority of the newly arriving species are shared with the Mediterranean and NE Atlantic, documenting the establishment of a faunal migration route via the North Alpine Foreland Basin. In the present study the lectotypes of Nucula mayeri Hörnes, 1865, Saccella subfragilis (Hörnes, 1875) and Lucinoma wolfi (Hoernes, 1875) are designated.


Sign in / Sign up

Export Citation Format

Share Document