Effects of liming on soil structure and GHG fluxes at three spruce sites in SW Germany

Author(s):  
Martin Maier ◽  
Valentin Gartiser ◽  
Verena Lang ◽  
Raphael Habel ◽  
Lelde Jansone ◽  
...  

<p>Forest soils in Central Europe received massive atmospheric deposition of SO<sub>2</sub> and NO<sub>x</sub> during the second half of the 20<sup>th</sup> century. The resulting fast acidification of the soils was accompanied by massive forest dieback and problematic nutrient imbalances at some sites. After the emissions of SO<sub>2</sub> have been reduced in the 80´s and 90´s, the situation of acidic deposition has been gradually improving. Yet, the deposition of N compounds remains high and still has an impact on forest ecosystems. Natural soil development and “regeneration” is a slow process, which is why other options were investigated to recover heavily affected forest soils. A well-known means to mitigate the observed effects of the anthropogenic acidification surges is liming, i.e. the application of minerals such as CaCO<sub>3</sub> and CaMg(CO<sub>3</sub>)<sub>2</sub> that are able to buffer strong acids. Liming directly affects soil pH which is a “master variable” of the soil. Soil pH, and thus, liming, affects and interacts with many soil processes from mineralization of organic matter and humification, to (de-) stabilization soil structure, nutrient availability and mobility, plant growth and more.</p><p>Several study sites were established in the 1980 in Baden-Wuerttemberg to study long term effects of liming on soil structure and forest growth. At all sites a “control” plot and a “limed” plot were established next to each other. The limed plots were treated with approx. 3 t ha<sup>-1</sup> of CaCO<sub>3</sub> in the 1980´s and 6 t ha<sup>-1</sup> of Ca/MgCO<sub>3 </sub>in 2003. Here we report on results from three sites (Bad Waldsee, Hospital, Herzogenweiler) with Spruce stands (70-110 years), where long term effects of liming on the physical soil structure and soil gas profiles (2017-2019) were studied (Jansone et al., 2020). Liming resulted in a reduction of the thickness of the humus layer and a blurring of the previously clearly separated boundary between the mineral soil and the humus layer. Even though total pore space in the top soil was slightly reduced at the limed plots, soil gas diffusivity was higher at a given air-filled pore-space. This indicates a better connectivity in the air-filled pores, that means more larger pores connecting the atmosphere at the soil surface and the mineral soil. Soil CO<sub>2</sub> concentrations showed clear seasonal patterns and a typical increase with depth. Higher CO<sub>2</sub> concentrations tend to be found in the un-limed control plots. Soil CH<sub>4</sub> concentrations at the soil–humus interface were closer to atmospheric concentrations in the limed plots compared to the control plots. This can be interpreted as an effect of the decrease in the thickness of the humus layer and the increase in the soil gas diffusivity (better aeration) or in a reduced activity of the methanotrophic community.</p><p> </p><p>Acknowledgement</p><p>This research was financially supported by Bundesministerium für Ernährung und Landwirtschaft (BMEL), grant number 28W-B-4-075-02 (2018–2021).</p><p><em>Literature</em></p><p><em>Jansone, L., von Wilpert, K. and Hartmann, P., 2020. Natural Recovery and Liming Effects in Acidified Forest Soils in SW-Germany. Soil Systems, 4(38): 1-35.</em></p>

1998 ◽  
Vol 78 (3) ◽  
pp. 477-479 ◽  
Author(s):  
C. J. Westman ◽  
S. Jauhiainen

Forest soil pH in southwest Finland was measured with identical sampling and analysing methods in 1970 and 1989. The acidity of the organic humus layer increased significantly as pH values measured on water and on salt suspensions decreased between the two sampling dates. For the mineral soil layers, no unambiguous trend was found. pH values measured on salt suspension tended to be unchanged or lower, while pH on water suspension in some soil layers were even higher in 1989 than in 1970. Key words: pH, repeated sampling


2021 ◽  
Author(s):  
Hans-Jörg Vogel ◽  
Mar­ia Balseiro-Romero ◽  
Philippe C. Baveye ◽  
Alexandra Kravchenko ◽  
Wilfred Otten ◽  
...  

<p>Soil structure, lately referred to as the ''architecture'' is a key to explain and understand all soil functions. The development of sophisticated imaging techniques over the last decades has led to significant progress in the description of this architecture and in particular of the geometry of the hierarchically-branched pore space in which transport of water, gases, solutes and particles occurs and where myriads of organisms live. Moreover, there are sophisticated tools available today to also visualize the spatial structure of the solid phase including mineral grains and organic matter. Hence, we do have access to virtually all components of soil architecture.</p><p>Unfortunately, it has so far proven very challenging to study the dynamics of soil architecture over time, which is of critical importance for soil as habitat and the turnover of organic matter. Several largely conflicting theories have been proposed to account for this dynamics, especially the formation of aggregates. We review these theories, and we propose a conceptual approach to reconcile them based on a consistent interpretation of experimental observations and by integrating known physical and biogeochemical processes. A key conclusion is that rather than concentrating on aggregate formation in the sense of how particles and organic matter reorganize to form aggregates as distinct functional units we should focus on biophysical processes that produce a porous, heterogeneous organo-mineral soil matrix that breaks into fragments of different size and stability when exposed to mechanical stress.  The unified vision we propose for soil architecture and the mechanisms that determine its temporal evolution, should pave the way towards a better understanding of soil processes and functions.</p>


2015 ◽  
Vol 10 (2) ◽  
pp. 363-375 ◽  
Author(s):  
Hilary T C Leung ◽  
Kendra R Maas ◽  
Roland C Wilhelm ◽  
William W Mohn

2018 ◽  
Vol 409 ◽  
pp. 872-889 ◽  
Author(s):  
Mélanie Court ◽  
Gregory van der Heijden ◽  
Serge Didier ◽  
Claude Nys ◽  
Claudine Richter ◽  
...  

2017 ◽  
Vol 46 (4) ◽  
pp. 862-870 ◽  
Author(s):  
Jonas Duus Stevens Lekfeldt ◽  
Charlotte Kjaergaard ◽  
Jakob Magid

2020 ◽  
Author(s):  
David Nimblad Svensson ◽  
Jumpei Fukumasu ◽  
Gunnar Börjesson ◽  
John Koestel

<p>Soil porosity, pore size distribution and pore characteristics such as connectivity are important for a range of soil processes including ease of root growth and air and water transport. The pore structure is therefore an important part of soil fertility. The pore space is sensitive to management practices such as tillage, fertilization and cropping. Understanding how these practices influence the pore space is important for maintaining a good soil structure that is well aerated and has sufficient drainage. X-ray computed tomography has become a widely used method for studying the pore space as it offers the advantage of enabling soil to be studied in its undisturbed form. In this study it was used to compare the effects of crop growth, tillage and N-fertilizing with Ca(NO3)<sub>2</sub> or farm yard manure (FYM). Soil samples were taken just below the surface from the long-term experiment in Ultuna, Sweden which was started in 1956. The bare fallow, FYM and Ca(NO3)<sub>2</sub>-treatment were sampled with minimum disturbance in two column sizes with inner diameters of 22.2 and 65.5 mm. Differences in pore space morphology were quantified and compared through pore size distribution and a range of connectivity measures, including the Euler number, the critical pore diameter and Gamma connectivity. Biopores were separated from non-biopores and their volume was quantified. Soil organic carbon was determined by dry combustion. Visible porosity and pores in the 150-500 µm class were significantly larger in the FYM and Ca(NO3)<sub>2</sub>-treatment compared to the bare fallow. The porosity occupied by biopores was not found to significantly differ between treatments but the biopores were found to have the largest diameters in the FYM-treatment. Despite that the organic carbon content was 1.7 times higher in the FYM compared to the Ca(NO3)<sub>2</sub>-treatment the visible porosity was similar. This may be due to the positive effects calcium has on the soil structure. The connectivity measures indicated that the FYM-treatment had the best connected pore networks. This may be partly due to the larger biopores. Ca(NO3)<sub>2</sub> showed to be a promising alternative to increase porosity. However, as all the management practices in the long-term field study are done by hand, future studies will have to investigate if the effect is equally similar to FYM under field conditions which are subject to heavy machineries.  </p>


Sign in / Sign up

Export Citation Format

Share Document