scholarly journals Influence of cropping and fertilization on soil pore characteristics in a long-term field study

Author(s):  
David Nimblad Svensson ◽  
Jumpei Fukumasu ◽  
Gunnar Börjesson ◽  
John Koestel

<p>Soil porosity, pore size distribution and pore characteristics such as connectivity are important for a range of soil processes including ease of root growth and air and water transport. The pore structure is therefore an important part of soil fertility. The pore space is sensitive to management practices such as tillage, fertilization and cropping. Understanding how these practices influence the pore space is important for maintaining a good soil structure that is well aerated and has sufficient drainage. X-ray computed tomography has become a widely used method for studying the pore space as it offers the advantage of enabling soil to be studied in its undisturbed form. In this study it was used to compare the effects of crop growth, tillage and N-fertilizing with Ca(NO3)<sub>2</sub> or farm yard manure (FYM). Soil samples were taken just below the surface from the long-term experiment in Ultuna, Sweden which was started in 1956. The bare fallow, FYM and Ca(NO3)<sub>2</sub>-treatment were sampled with minimum disturbance in two column sizes with inner diameters of 22.2 and 65.5 mm. Differences in pore space morphology were quantified and compared through pore size distribution and a range of connectivity measures, including the Euler number, the critical pore diameter and Gamma connectivity. Biopores were separated from non-biopores and their volume was quantified. Soil organic carbon was determined by dry combustion. Visible porosity and pores in the 150-500 µm class were significantly larger in the FYM and Ca(NO3)<sub>2</sub>-treatment compared to the bare fallow. The porosity occupied by biopores was not found to significantly differ between treatments but the biopores were found to have the largest diameters in the FYM-treatment. Despite that the organic carbon content was 1.7 times higher in the FYM compared to the Ca(NO3)<sub>2</sub>-treatment the visible porosity was similar. This may be due to the positive effects calcium has on the soil structure. The connectivity measures indicated that the FYM-treatment had the best connected pore networks. This may be partly due to the larger biopores. Ca(NO3)<sub>2</sub> showed to be a promising alternative to increase porosity. However, as all the management practices in the long-term field study are done by hand, future studies will have to investigate if the effect is equally similar to FYM under field conditions which are subject to heavy machineries.  </p>

Fractals ◽  
2014 ◽  
Vol 22 (03) ◽  
pp. 1440011 ◽  
Author(s):  
F. J. MUÑOZ ◽  
F. SAN JOSÉ MARTÍNEZ ◽  
F. J. CANIEGO

Soil structure plays an important role in flow and transport phenomena, and a quantitative characterization of the spatial heterogeneity of the pore space geometry is beneficial for prediction of soil physical properties. Morphological features such as pore-size distribution, pore space volume or pore–solid surface can be altered by different soil management practices. Irregularity of these features and their changes can be described using fractal geometry. In this study, we focus primarily on the characterization of soil pore space as a 3D geometrical shape by fractal analysis and on the ability of fractal dimensions to differentiate between two a priori different soil structures. We analyze X-ray computed tomography (CT) images of soils samples from two nearby areas with contrasting management practices. Within these two different soil systems, samples were collected from three depths. Fractal dimensions of the pore-size distributions were different depending on soil use and averaged values also differed at each depth. Fractal dimensions of the volume and surface of the pore space were lower in the tilled soil than in the natural soil but their standard deviations were higher in the former as compared to the latter. Also, it was observed that soil use was a factor that had a statistically significant effect on fractal parameters. Fractal parameters provide useful complementary information about changes in soil structure due to changes in soil management.


Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1362
Author(s):  
Ioanna S. Panagea ◽  
Antonio Berti ◽  
Pavel Čermak ◽  
Jan Diels ◽  
Annemie Elsen ◽  
...  

Soil water retention (SWR) is an important soil property related to soil structure, texture, and organic matter (SOM), among other properties. Agricultural management practices affect some of these properties in an interdependent way. In this study, the impact of management-induced changes of soil organic carbon (SOC) on SWR is evaluated in five long-term experiments in Europe (running from 8 up to 54 years when samples were taken). Topsoil samples (0–15 cm) were collected and analysed to evaluate the effects of three different management categories, i.e., soil tillage, the addition of exogenous organic materials, the incorporation of crop residues affecting SOC and water content under a range of matric potentials. Changes in the total SOC up to 10 g C kg−1 soil (1%) observed for the different management practices, do not cause statistically significant differences in the SWR characteristics as expected. The direct impact of the SOC on SWR is consistent but negligible, whereas the indirect impact of SOC in the higher matric potentials, which are mainly affected by soil structure and aggregate composition, prevails. The different water content responses under the various matric potentials to SOC changes for each management group implies that one conservation measure alone has a limited effect on SWR and only a combination of several practices that lead to better soil structure, such as reduced soil disturbances combined with increased SOM inputs can lead to better water holding capacity of the soil.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 291
Author(s):  
Ramón Bienes ◽  
Maria Jose Marques ◽  
Blanca Sastre ◽  
Andrés García-Díaz ◽  
Iris Esparza ◽  
...  

Long-term field trials are essential for monitoring the effects of sustainable land management strategies for adaptation and mitigation to climate change. The influence of more than thirty years of different management is analyzed on extensive crops under three tillage systems, conventional tillage (CT), minimum tillage (MT), and no-tillage (NT), and with two crop rotations, monoculture winter-wheat (Triticum aestivum L.) and wheat-vetch (Triticum aestivum L.-Vicia sativa L.), widely present in the center of Spain. The soil under NT experienced the largest change in organic carbon (SOC) sequestration, macroaggregate stability, and bulk density. In the MT and NT treatments, SOC content was still increasing after 32 years, being 26.5 and 32.2 Mg ha−1, respectively, compared to 20.8 Mg ha−1 in CT. The SOC stratification (ratio of SOC at the topsoil/SOC at the layer underneath), an indicator of soil conservation, increased with decreasing tillage intensity (2.32, 1.36, and 1.01 for NT, MT, and CT respectively). Tillage intensity affected the majority of soil parameters, except the water stable aggregates, infiltration, and porosity. The NT treatment increased available water, but only in monocropping. More water was retained at the permanent wilting point in NT treatments, which can be a disadvantage in dry periods of these edaphoclimatic conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


2003 ◽  
Vol 83 (4) ◽  
pp. 363-380 ◽  
Author(s):  
A. J. VandenBygaart ◽  
E. G. Gregorich ◽  
D. A. Angers

To fulfill commitments under the Kyoto Protocol, Canada is required to provide verifiable estimates and uncertainties for soil organic carbon (SOC) stocks, and for changes in those stocks over time. Estimates and uncertainties for agricultural soils can be derived from long-term studies that have measured differences in SOC between different management practices. We compiled published data from long-term studies in Canada to assess the effect of agricultural management on SOC. A total of 62 studies were compiled, in which the difference in SOC was determined for conversion from native land to cropland, and for different tillage, crop rotation and fertilizer management practices. There was a loss of 24 ± 6% of the SOC after native land was converted to agricultural land. No-till (NT) increased the storage of SOC in western Canada by 2.9 ± 1.3 Mg ha-1; however, in eastern Canada conversion to NT did not increase SOC. In general, the potential to store SOC when NT was adopted decreased with increasing background levels of SOC. Using no-tillage, reducing summer fallow, including hay in rotation with wheat (Triticum aestivum L.), plowing green manures into the soil, and applying N and organic fertilizers were the practices that tended to show the most consistent in creases in SOC storage. By relating treatment SOC levels to those in the control treatments, SOC stock change factors and their levels of uncertainty were derived for use in empirical models, such as the United Nations Intergovernmental Panel on Climate Change (IPCC). Guidelines model for C stock changes. However, we must be careful when attempting to extrapolate research plot data to farmers’ fields since the history of soil and crop management has a significant influence on existing and future SOC stocks. Key words: C sequestration, tillage, crop rotations, fertilizer, cropping intensity, Canada


Author(s):  
L A Gabbarini ◽  
E Figuerola ◽  
J P Frene ◽  
N B Robledo ◽  
F M Ibarbalz ◽  
...  

Abstract The effects of tillage on soil structure, physiology, and microbiota structure were studied in a long-term field experiment, with side-to-side plots, established to compare effects of conventional tillage (CT) vs. no-till (NT) agriculture. After 27 years, part of the field under CT was switched to NT and vice versa. Soil texture, soil enzymatic profiles, and the prokaryotic community structure (16S rRNA genes amplicon sequencing) were analysed at two soil depths (0–5, 5–10 cm) in samples taken 6, 18, and 30 months after switching tillage practices. Soil enzymatic activities were higher in NT than CT, and enzymatic profiles responded to the changes much earlier than the overall prokaryotic community structure. Beta diversity measurements of the prokaryotic community indicated that the levels of stratification observed in long-term NT soils were already recovered in the new NT soils thirty months after switching from CT to NT. Bacteria and Archaea OTUs, which responded to NT were associated with coarse soil fraction, SOC and C cycle enzymes while CT responders were related to fine soil fractions and S cycle enzymes. This study showed the potential of managing the soil prokaryotic community and soil health through changes in agricultural management practices.


Oecologia ◽  
2014 ◽  
Vol 177 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Lorenzo Menichetti ◽  
Sabine Houot ◽  
Folkert van Oort ◽  
Thomas Kätterer ◽  
Bent T. Christensen ◽  
...  

2018 ◽  
Vol 13 (No. 3) ◽  
pp. 140-149 ◽  
Author(s):  
Šimanský Vladimír ◽  
Lukáč Martin

Soil structure is a key determinant of many soil environmental processes and is essential for supporting terrestrial ecosystem productivity. Management of arable soils plays a significant role in forming and maintaining their structure. Between 1994 and 2011, we studied the influence of soil tillage and fertilisation regimes on the stability of soil structure of loamy Haplic Luvisol in a replicated long-term field experiment in the Dolná Malanta locality (Slovakia). Soil samples were repeatedly collected from plots exposed to the following treatments: conventional tillage (CT) and minimum tillage (MT) combined with conventional (NPK) and crop residue-enhanced fertilisation (CR+NPK). MT resulted in an increase of critical soil organic matter content (St) by 7% in comparison with CT. Addition of crop residues and NPK fertilisers significantly increased St values (by 7%) in comparison with NPK-only treatments. Soil tillage and fertilisation did not have any significant impact on other parameters of soil structure such as dry sieving mean weight diameters (MWD), mean weight diameter of water-stable aggregates (MWD<sub>WSA</sub>), vulnerability coefficient (Kv), stability index of water-stable aggregates (Sw), index of crusting (Ic), contents of water-stable macro- (WSA<sub>ma</sub>) and micro-aggregates (WSA<sub>mi</sub>). Ic was correlated with organic matter content in all combinations of treatments. Surprisingly, humus quality did not interact with soil management practices to affect soil structure parameters. Higher sums of base cations, CEC and base saturation (Bs) were linked to higher Sw values, however higher values of hydrolytic acidity (Ha) resulted in lower aggregate stability in CT treatments. Higher content of K<sup>+</sup> was responsible for higher values of MWD<sub>WSA </sub>and MWD in CT. In MT, contents of Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> were significantly correlated with contents of WSA<sub>mi </sub>and WSA<sub>ma</sub>. Higher contents of Na<sup>+</sup> negatively affected St values and positive correlations were detected between Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> and Ic in NPK treatments.


Sign in / Sign up

Export Citation Format

Share Document