Early Cretaceous glendonites of Arctic realm: distributions and their paleoclimate implication

Author(s):  
Kseniya Mikhailova ◽  
Victoria Ershova ◽  
Mikhail Rogov

<p>In the middle of 20<sup>th</sup> century glendonites were purposed as an indicator of cold climate. There is no doubt that unique morphology and sizes of pseudomorphs occurring through Precambrian to Quaternary succession indicate uncommon geochemical environment. Here, we present an overview of Early Cretaceous glendonites distribution across Arctic which widely distributed here despite generally greenhouse climate conditions in Early Cretaceous.</p><p>Late Berriasian pseudomorphs are known on northeastern Siberia and Arctic Canada. Valanginian glendonites are the widest ones are described from the Northern and Western Siberia, Spitsbergen and the Arctic Canada. Late Hauterivian concretions were studied on Svalbard. Barremian and lower Aptian glendonites are unknown in this area due to wide distributed continental succession, but late Barremian glendonites were reported from the wells drilled on the Barents Sea shelf. Middle and Upper Aptian glendonites are found on Svalbard,  North Greenland, the Arctic Canada and North-East Russia. Lower Albian glendonites are found on Svalbard, islands of Arctic Canada and the Koryak Uplands.</p><p>Nowadays it is reliable known that the precursor of glendonites is an ikaite - metastable calcium carbonate hexahydrate, forming in a narrow temperature range from 0-4<sup>o</sup>C, mainly in near-bottom conditions. Besides low temperature, high phosphate concentrations that occurs due to anaerobic oxidation of methane and/or organic matter; dissolved organic carbon, sulfates and amino acid may favor to ikaite formation as well. However, glendonites associated with terrigenious rocks, often including glacial deposits, that allow to use them as a paleoclimate indicator.</p><p>Glendonites show a wide variability in form and size: from single crystal blades to stellate aggregates and rosettes, usually ranged from a few mm to dozens of cm. Mineralogical composition of pseudomorph is represented mainly by three calcite phases determining by CL-light. Both δ<sup>18</sup>O and δ<sup>13</sup>C of glendonites are characterized by a broad range of values. Oxygen isotope composition ranges from -14 to -0 ‰ Vienna Pee Dee Belemnite (VPDB), whilst  carbon isotope composition ranges from -52.4 to – 14 ‰ Vienna Pee Dee Belemnite (VPDB).</p><p>Based on received data we suggest that δ<sup>18</sup>O reflects the complex processes involved in ikaite-glendonite transformation, supposing mixing depleted fluids with seawater. Nevertheless, received data coincide with δ<sup>18</sup>O values reported from Paleozoic-Quaternary glendonites formed in near-freezing environments. Values of δ<sup>13</sup>C of glendonites is the result of both mixing seawater inorganic carbon and sedimentary organic diagenesis and close to bacterial sulfate reduction and/or anaerobic oxidation of methane or organic matter.</p><p>To conclude,  Early Cretaceous climate was warm generally, however studied pseudomorphs point to cold episodes in Late Berriasian, Valanginian, Late Hauterivian, Middle-Late Aptian and Early Albian.</p><p>The study was supported by RFBR, project number 20-35-70012.</p>

2020 ◽  
Author(s):  
Kseniya Mikhailova ◽  
Victoria Ershova ◽  
Mikhail Rogov ◽  
Boris Pokrovsky ◽  
Oleg Vereshchagin

<p>Glendonites often used as paleoclimate indicator of cold near-bottom temperature, as these are calcite pseudomorphs of ikaite, a metastable calcium carbonate hexahydrate, precipitates mostly under low temperature (mainly from 0-4<sup>o</sup>C) and may be stabilized by high phosphate concentrations that occurs due to anaerobic oxidation of methane and/or organic matter; dissolved organic carbon, sulfates and amino acid may contribute ikaite formation as well.  Therefore, glendonites-bearing host rocks frequently include glacial deposits that make them useful as a paleoclimate indicator of near-freezing temperature.</p><p>Our study is based on material collected from five wells drilled in eastern Barents Sea: Severo-Murmanskaya, Ledovaya – 1,2; Ludlovskaya – 1,2. The studied glendonites, mainly represented by relatively small rhombohedral pseudomorphs (0,5-2 cm) and rarely by stellate aggregates, collected from Middle Jurassic to Lower Cretaceous shallow marine clastic deposits. They scattered distributed throughout succession. Totally 18 samples of glendonites were studied. The age of host-bearing rocks were defined by fossils: bivalves or ammonites, microfossils or dinoflagellate. Bajocian-Bathonian glendonites were collected from Ledovaya – 1 and Ludlovskaya – 1 and 2 wells; in addition to these occurrences Middle Jurassic glendonites are known also in boreholes drilled at Shtockmanovskoe field. Numerous ‘jarrowite-like’ glendonites of the Middle Volgian (~ latest early Tithonian) age were sampled from Severo-Murmanskaya well. Unique Late Barremian glendonites were found in Ledovaya – 2 well.</p><p>δ<sup>18</sup>O values of Middle Jurassic glendonite concretions range from – 5.4 to –1.7 ‰ Vienna Pee Dee Belemnite (VPDB); for Upper Jurassic – Lower Cretaceous δ<sup>18</sup>O values range from – 4.3 to –1.6 ‰ VPDB; for Lower Cretaceous - δ<sup>18</sup>O values range from – 4.5 to –3.4 ‰ VPDB. Carbon isotope composition for Middle Jurassic glendonite concretions δ<sup>13</sup>C values range from – 33.3 to –22.6 ‰ VPDB; for Upper Jurassic – Lower Cretaceous δ<sup>13</sup>C values range from – 25.1 to –18.4 ‰ VPDB; for Lower Cretaceous - δ<sup>13</sup>C values range from – 30.1 to –25.6 ‰ VPDB.</p><p>Based on δ<sup>18</sup>O data we supposed that seawater had a strong influence on ikaite-derived calcite precipitation. Received data coincide with δ<sup>18</sup>O values reported from other Mesozoic glendonites and Quaternary glendonites formed in cold environments. Values of δ<sup>13</sup>C of glendonites are close to bacterial sulfate reduction and/or anaerobic oxidation of methane or organic matter. Glendonites consist of carbonates forming a number of phases which different in phosphorus and magnesium content. Mg-bearing calcium carbonate and dolomite both include framboidal pyrite, which can indicate (1) lack of strong rock transformations activity and (2) presence of sulfate-reduction bacteria in sediments.</p><p>To conclude, Mesozoic climate was generally warm and studied concretions indicate cold climate excursion in Middle Jurassic, Upper Jurassic-Early Cretaceous and Early Cretaceous.</p><p> </p><p>The study was supported by RFBR, project number 20-35-70012.</p>


Palaios ◽  
2020 ◽  
Vol 35 (3) ◽  
pp. 151-163 ◽  
Author(s):  
ALISON J. ROWE ◽  
NEIL H. LANDMAN ◽  
J. KIRK COCHRAN ◽  
JAMES D. WITTS ◽  
MATTHEW P. GARB

ABSTRACT Cold methane seeps were common in the Late Cretaceous Western Interior Seaway of North America. They provided a habitat for a diverse array of fauna including ammonites. Recent research has demonstrated that ammonites lived at these sites. However, it is still unknown if they hatched at the seeps or only arrived there later in ontogeny. To answer this question, we documented the abundance and size distribution of small specimens of Baculites and Hoploscaphites at eight seep sites in the Pierre Shale of South Dakota. The specimens of Hoploscaphites range from 0.8 to 8.1 mm in shell diameter, with most of them falling between 1 and 1.5 mm. The specimens of Baculites range from 0.7 to 19.2 mm in length, with most specimens falling between 6 and 8 mm. The small size and morphology of these specimens indicate that they are neanoconchs, that is, newly hatched individuals that lived for a short time after hatching. We also analyzed the isotope composition (δ13C and δ18O) of 12 small specimens of Baculites and one specimen of Hoploscaphites with excellent shell preservation from one seep deposit. The values of δ13C and δ18O range from -16.3 to -2.5‰ and -3.0 to -0.9‰, respectively. The values of δ18O translate into temperatures of 19–28°C, which are comparable to previous estimates of the temperatures of the Western Interior Seaway. The low values of δ13C suggest that the tiny animals incorporated carbon derived from anaerobic oxidation of 12C-enriched methane into their shells. Evidently, they must have lived in close proximity to seep fluids emerging at the sediment-water interface and the associated microbial food web. However, this may have contributed to their demise if they were exposed to elevated concentrations of H2S derived from the anaerobic oxidation of methane.


2011 ◽  
Vol 75 (3) ◽  
pp. 491-500 ◽  
Author(s):  
Elizabeth K. Thomas ◽  
Jason P. Briner ◽  
Yarrow Axford ◽  
Donna R. Francis ◽  
Gifford H. Miller ◽  
...  

AbstractWe generate a multi-proxy sub-centennial-scale reconstruction of environmental change during the past two millennia from Itilliq Lake, Baffin Island, Arctic Canada. Our reconstruction arises from a finely subsectioned 210Pb- and 14C-dated surface sediment core and includes measures of organic matter (e.g., chlorophyll a; carbon–nitrogen ratio) and insect (Diptera: Chironomidae) assemblages. Within the past millennium, the least productive, and by inference coldest, conditions occurred ca. AD 1700–1850, late in the Little Ice Age. The 2000-yr sediment record also reveals an episode of reduced organic matter deposition during the 6th–7th century AD; combined with the few other records comparable in resolution that span this time interval from Baffin Island, we suggest that this cold episode was experienced regionally. A comparable cold climatic episode occurred in Alaska and western Canada at this time, suggesting that the first millennium AD cold climate anomaly may have occurred throughout the Arctic. Dramatic increases in aquatic biological productivity at multiple trophic levels are indicated by increased chlorophyll a concentrations since AD 1800 and chironomid concentrations since AD 1900, both of which have risen to levels unprecedented over the past 2000 yr.


2021 ◽  
Vol 67 (No. 5) ◽  
pp. 264-269
Author(s):  
Yaohong Zhang ◽  
Fangyuan Wang

Quinones, redox-active functional groups in soil organic matter, can act as electron shuttles for microbial anaerobic transformation. Here, we used <sup>13</sup>CH<sub>4</sub> to trace <sup>13</sup>C conversion (<sup>13</sup>C-CO<sub>2</sub> + <sup>13</sup>C-SOC) to investigate the influence of an artificial electron shuttle (anthraquinone-2,6-disulfonate, AQDS) on denitrifying anaerobic methane oxidation (DAMO) in paddy soil. The results showed that AQDS could act as the terminal electron acceptor for the anaerobic oxidation of methane (AOM) in the paddy field. Moreover, AQDS significantly enhanced nitrate-dependent AOM rates and the amount of <sup>13</sup>C-CH<sub>4</sub> assimilation to soil organic carbon (SOC), whereas it was remarkably reduced nitrite-dependent AOM rates and <sup>13</sup>C assimilation. Ultimately, AQDS notably increased the total DAMO rates and <sup>13</sup>C assimilation to SOC. However, the electron shuttle did not change the percentage of <sup>13</sup>C-SOC in total <sup>13</sup>C-CH<sub>4</sub> conversion. These results suggest that electron shuttles in the natural organic matter might be able to offset methane emission by facilitating AOM coupled with the denitrification process.


2016 ◽  
Vol 381 ◽  
pp. 54-66 ◽  
Author(s):  
Melesio Quijada ◽  
Armelle Riboulleau ◽  
Pierre Faure ◽  
Raymond Michels ◽  
Nicolas Tribovillard

2021 ◽  
Vol 194 ◽  
pp. 116928
Author(s):  
Wen-Bo Nie ◽  
Jie Ding ◽  
Guo-Jun Xie ◽  
Xin Tan ◽  
Yang Lu ◽  
...  

Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1541-1554 ◽  
Author(s):  
Christian Stranne ◽  
Matt O'Regan ◽  
Martin Jakobsson ◽  
Volker Brüchert ◽  
Marcelo Ketzer

Abstract. Assessments of future climate-warming-induced seafloor methane (CH4) release rarely include anaerobic oxidation of methane (AOM) within the sediments. Considering that more than 90 % of the CH4 produced in ocean sediments today is consumed by AOM, this may result in substantial overestimations of future seafloor CH4 release. Here, we integrate a fully coupled AOM module with a numerical hydrate model to investigate under what conditions rapid release of CH4 can bypass AOM and result in significant fluxes to the ocean and atmosphere. We run a number of different model simulations for different permeabilities and maximum AOM rates. In all simulations, a future climate warming scenario is simulated by imposing a linear seafloor temperature increase of 3 ∘C over the first 100 years. The results presented in this study should be seen as a first step towards understanding AOM dynamics in relation to climate change and hydrate dissociation. Although the model is somewhat poorly constrained, our results indicate that vertical CH4 migration through hydraulic fractures can result in low AOM efficiencies. Fracture flow is the predicted mode of methane transport under warming-induced dissociation of hydrates on upper continental slopes. Therefore, in a future climate warming scenario, AOM might not significantly reduce methane release from marine sediments.


2004 ◽  
Vol 70 (2) ◽  
pp. 1231-1233 ◽  
Author(s):  
Jens Kallmeyer ◽  
Antje Boetius

ABSTRACT Rates of sulfate reduction (SR) and anaerobic oxidation of methane (AOM) in hydrothermal deep-sea sediments from Guaymas Basin were measured at temperatures of 5 to 200°C and pressures of 1 × 105, 2.2 × 107, and 4.5 × 107 Pa. A maximum SR of several micromoles per cubic centimeter per day was found at between 60 and 95°C and 2.2 × 107 and 4.5 × 107 Pa. Maximal AOM was observed at 35 to 90°C but generally accounted for less than 5% of SR.


Sign in / Sign up

Export Citation Format

Share Document