Effects of Geological Structures on Rainfall-Runoff Processes in Headwater Catchments in a Sedimentary Rock Mountain

Author(s):  
Jun Inaoka ◽  
Ken'ichirou Kosugi ◽  
Naoya Masaoka ◽  
Tetsushi Itokazu ◽  
Kimihito Nakamura

<p>To clarify rainfall-runoff responses in mountainous areas is essential for disaster prediction as well as water resource management. Runoff is considered to be affected by many factors including evapotranspiration, rainfall, topography, geology, vegetation, and land use. Among them, topography is said to be the most affectable factor. However, previous studies focused on geologies revealed that though catchments in crystalline mountains have less differences among runoffs, catchments in sedimentary rock mountains show great variation in their runoffs. To explain this difference, the geological structures were expected to be the key of runoffs in sedimentary rock mountains. In other words, particularly in headwater catchments located in sedimentary rock mountains, dips and strikes may significantly affect rainwater discharge. Moreover, the groundwater system can significantly be affected by the hydraulic anisotropy originated from geological stratigraphy. Additionally, in sedimentary rock mountains, previous studies suggested convergence of groundwater flows in the direction of strikes, but the effects of dips and strikes on rainfall-runoff responses were not investigated. Furthermore, none of these previous studies focused on the effects of geological structures on storm runoff responses. Therefore, based on the simultaneous observation of twelve catchments that lie radially from a single, isolated mountain peak, this study aims to clarify the effects of dips and strikes, which characterize sedimentary rock mountains, on water discharge.</p><p>The results obtained were as follows: (1) Even though the topographic wetness index (TWI) distributions of the twelve catchments were similar, there were significant differences in their runoff characteristics; (2) Catchments with average flow direction oriented toward the strike direction (strike-oriented catchments) are characterized by large baseflows; (3) Catchments with average flow direction oriented toward the opposite dip direction (opposite dip-oriented catchments) are steep, and this results in quick storm runoff generation; (4) Catchments with average flow direction oriented toward the dip direction (dip-oriented catchments) are gentle, and this results in delayed storm runoff generation. It was supposed that in strike-oriented catchments, large quantities of groundwater flowing along the bedding planes owing to hydraulic anisotropy, exfiltrate and sustain the large amount of the observed baseflow, i.e., in strike-oriented catchments, runoff is directly controlled by geological structures. On the other hand, in opposite dip-oriented and dip-oriented catchments, runoff is indirectly controlled by geological structures, i.e., geological structures affect slope gradients, which result in differences in storm runoff generation. Thus, this study clearly explains that geological structures significantly affect rainfall-runoff responses in headwater catchments located in sedimentary rock mountains.</p>

2020 ◽  
Vol 34 (26) ◽  
pp. 5567-5579
Author(s):  
Jun Inaoka ◽  
Ken'ichirou Kosugi ◽  
Naoya Masaoka ◽  
Tetsushi Itokazu ◽  
Kimihito Nakamura

1986 ◽  
Vol 22 (8) ◽  
pp. 1263-1272 ◽  
Author(s):  
A. J. Pearce ◽  
M. K. Stewart ◽  
M. G. Sklash

2017 ◽  
Vol 65 (2) ◽  
pp. 114-122 ◽  
Author(s):  
Jana Votrubova ◽  
Michal Dohnal ◽  
Tomas Vogel ◽  
Martin Sanda ◽  
Miroslav Tesar

AbstractHydrological monitoring in small headwater catchments provides the basis for examining complex interrelating hydraulic processes that govern the runoff generation. Contributions of different subsurface runoff mechanisms to the catchment discharge formation at two small forested headwater catchments are studied with the help of their natural isotopic signatures. The Uhlirska catchment (Jizera Mts., Czech Republic) is situated in headwater area of the Lusatian Neisse River. The catchment includes wetlands at the valley bottom developed over deluviofluvial granitic sediments surrounded by gentle hillslopes with shallow soils underlain by weathered granite. The Liz catchment (Bohemian Forest, Czech Republic) is situated in headwater area of the Otava River. It belongs to hillslope-type catchments with narrow riparian zones. The soil at Liz is developed on biotite paragneiss bedrock. The basic comparison of hydrological time series reveals that the event-related stream discharge variations at the Uhlirska catchment are bigger and significantly more frequent than at Liz. The analysis of isotope concentration data revealed different behavior of the two catchments during the major rainfall-runoff events. At Uhlirska, the percentage of the direct runoff formed by the event water reaches its maximum on the falling limb of the hydrograph. At Liz, the event water related fraction of the direct outflow is maximal on the rising limb of the hydrograph and then lowers. The hydraulic functioning of the Uhlirska catchment is determined by communication between hillslope and riparian zone compartments.


2004 ◽  
Vol 8 (5) ◽  
pp. 903-922 ◽  
Author(s):  
M. Bari ◽  
K. R. J. Smettem

Abstract. A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted monthly hydrographs. The observed and predicted monthly runoff for all catchments matched well with coefficients of determination (R2) ranging from 0.68 to 0.87. Predictions were relatively poor for: (i) the Ernies catchment (lowest rainfall, forested), and (ii) months with very high flows. Overall, the predicted mean annual streamflow was within ±8% of the observed values. Keywords: monthly streamflow, land use change, conceptual model, data-based approach, groundwater


1997 ◽  
Vol 25 ◽  
pp. 367-370 ◽  
Author(s):  
Richard Kattelmann

Snow cover in the intermittent snow zone of the Sierra Nevada can occupy more than 10 000 km2 of the mountain range, but it has received relatively little attention in river forecasting. Snow is deposited at lower elevations only during the cold storms of winter, and remains there only for a few days or weeks. When cold storms have created a thin snow cover at low elevations, a subsequent warm storm can melt this snow in just a few hours and increase the runoff response dramatically. Operational hydrological models and river-forecasting procedures have tended to overlook contributions from the intermittent-snow zone, focusing instead on rainfall-runoff or melt from the snowpack zone at higher elevations. Data-collection efforts are minimal in this zone, too. Ideally, spatially distributed models of snowmelt and runoff generation are needed to account for the typically large differences in snow cover on different aspects in the intermittent snow zone. Although aircraft and satellite imagery would be most desirable to monitor the distribution of snow cover in the intermittent-snow zone, even a few climate stations that report precipitation type and snow presence would be a major improvement over the present situation in the Sierra Nevada.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2324
Author(s):  
Peng Lin ◽  
Pengfei Shi ◽  
Tao Yang ◽  
Chong-Yu Xu ◽  
Zhenya Li ◽  
...  

Hydrological models for regions characterized by complex runoff generation process been suffer from a great weakness. A delicate hydrological balance triggered by prolonged wet or dry underlying condition and variable extreme rainfall makes the rainfall-runoff process difficult to simulate with traditional models. To this end, this study develops a novel vertically mixed model for complex runoff estimation that considers both the runoff generation in excess of infiltration at soil surface and that on excess of storage capacity at subsurface. Different from traditional models, the model is first coupled through a statistical approach proposed in this study, which considers the spatial heterogeneity of water transport and runoff generation. The model has the advantage of distributed model to describe spatial heterogeneity and the merits of lumped conceptual model to conveniently and accurately forecast flood. The model is tested through comparison with other four models in three catchments in China. The Nash–Sutcliffe efficiency coefficient and the ratio of qualified results increase obviously. Results show that the model performs well in simulating various floods, providing a beneficial means to simulate floods in regions with complex runoff generation process.


Sign in / Sign up

Export Citation Format

Share Document