Rise and fall of rotaliids in the Paleocene-Eocene: the influence of climate and trophic competition

Author(s):  
Andrea Benedetti ◽  
Cesare Andrea Papazzoni ◽  
Francesca Romana Bosellini

<p>It is largely accepted that climate plays a pivotal role in the diversification of shallow-water communities, with special regards to larger foraminifera (LF), also because increase of surface water temperatures is often accompanied by change in trophic conditions. The shift from widespread eutrophic to oligotrophic conditions in shallow seas probably contributed to the LF differentiation during Paleocene-Eocene times. However, there are few recent attempts to quantify the changes in biodiversity and to correlate them with the global climatic events of the Paleogene. We concentrated our attention on the group of rotaliids, resilient taxa that partially survived after the mass extinction occurred at the end of the Cretaceous.</p><p>Our data show that their differentiation at genus level was very rapid, reaching its maximum already in the late Danian SB2 Zone. Specific diversification, instead, culminated in late Thanetian SB4 Zone. A second peak in specific diversity is recorded during the Cuisian (upper part of the Ypresian), then rotaliid diversity steadily declined, as long as other groups of larger foraminifers, especially <em>Alveolina </em>and <em>Nummulites</em>, became more competitive and proliferated with a large number of species up to the Bartonian SB17 Zone, when a significant drop in rotaliid biodiversity is recorded.</p><p>Differently to other taxonomic groups, i.e., alveolinids and nummulitids, for which a single genus during the whole Eocene generated numerous species, rotaliid genera are usually characterized by a low number of species, possibly due to the re-opening of ecological niches after the abrupt decrease of diversity that followed the PETM event. The competition with other K-strategist LF probably contributed to the decline of rotaliids in the middle Eocene up to the MECO event, where a last dramatic drop is recorded.</p><p>The major changes appear strictly linked to warming events such as the Late Danian Event (LDE, starting of the generic diversification of rotaliids), Paleocene Eocene Termal Maximum (PETM, faunal turnover followed by abrupt decrease in both generic and specific diversity), Early Eocene Climatic Optimum (EECO, increase in number of K-strategists under widespread oligotrophic conditions) and Middle Eocene Climatic Optimum (MECO, ultimate drop in diversity and competition with other larger foraminifers).</p><p>This study was funded by the Italian Ministry of Education and Research (MIUR), funds PRIN 2017: project “Biota resilience to global change: biomineralization of planktic and benthic calcifiers in the past, present and future” (prot. 2017RX9XXY).</p>

2021 ◽  
Author(s):  
Malcolm Hart ◽  
Pritpal Mangat ◽  
Meriel Fitzpatrick

<p>The Paleogene section of Whitecliff Bay (Isle of Wight) is one of the most complete onshore successions in North West Europe (see Curry, 1965, 1966). The microfossil assemblages have been investigated by many micropaleontologists and the succession of foraminifera, ostracods, calcareous nannofossils, pteropods, diatoms, charophytes and dinocysts have been described in varying levels of detail. The planktic foraminiferal datum (Wright, 1972; Murray et al., 1989) in the Lower Eocene and the occurrence of larger foraminifera in the mid-Eocene provide evidence of incursions of warm water taxa that may be recording the presence of the Early Eocene Climatic Optimum (EECO) and the Middle Eocene Climatic Optimum (MECO) although these occurrences could equally be caused by changes in palaeogeography, glacio-eustasy and the general depositional environment.</p><p>Over a period of over 40 years samples have been collected from both the cliff succession and, at times of lowered sediment levels, on the foreshore which can often provide 100% exposure of the succession. Preservation of microfossil assemblages in samples is always better when collected from the foreshore while the cliff succession often records no calcareous (e.g., foraminifera) or siliceous microfossils (e.g., diatoms).</p><p>Both EECO and MECO are recorded as being brief, transient events while the palaeontological variations look to be of an altogether longer duration. Stable isotope data are limited (Dawber et al., 2011) and, at the present time, do not provide precise confirmation of isotope excursions precisely synchronous with the palaeontological distributions. Nevertheless, the evidence of northward migration by warm-water taxa is quite distinctive and worthy of still further investigation. In the case of MECO, the presence of Nummulites spp., Alveolina fusiformis and corals is certainly suggestive of warm-water migration into the northern confines of the Anglo-Paris-Belgian Basin.</p><p>Curry, D., 1965. The Palaeogene Beds of South-East England. Proceedings of the Geologists’ Association, 76(2), 151‒173.</p><p>Curry, D., 1966. Problems of correlation in the Anglo-Paris-Basin. Proceedings of the Geologists’ Association, 77(4), 437‒467.</p><p>Dawber, C.F., Tripati, A.K., Gale, A.S., MacNiocaill, C., Hesselbo, S.P., 2011. Glacioeustasy during the middle Eocene? Insights from the stratigraphy of the Hampshire Basin, UK. Palaeogeography, Palaeoclimatology, Palaeoecology, 300, 84–100.</p><p>Wright, C.A., 1972.  The recognition of a planktonic foraminiferid datum in the London Clay of the Hampshire Basin. Proceedings of the Geologists’ Association, 83, 413‒419.</p><p>Murray, J.W., Curry, D., Haynes, J.R., King, C.,1989. Palaeogene. In: Jenkins, D.G., Murray, J.W. (eds), Stratigraphical Atlas of Fossil Foraminifera [2<sup>nd</sup> Edition] (eds), British Micropalaeontological Series, Ellis Horwood Ltd, Chichester, 490‒536.</p>


2021 ◽  
Author(s):  
Kristin McDougall

ABSTRACT Paleogene marine strata in the eastern San Francisco Bay area are exposed in discontinuous outcrops in the various tectonic blocks. Although there are many missing intervals, the strata were previously thought to span most of the Paleocene and Eocene. Revision of biochronology and calibration to the international time scale as well as to the global oxygen isotope curve and sea-level curves indicate that the strata are latest Paleocene through middle Eocene in age and contain faunal changes that are linked to the overall global climate trends and hyperthermals of that time. The Paleocene-Eocene thermal maximum, third Eocene thermal maximum, early Eocene climatic optimum, and middle Eocene climatic optimum are all identified in the eastern San Francisco Bay marine strata. The dominance of smoothly finished, dissolution-resistant agglutinated benthic foraminiferal species corresponds with a rapid shoaling and rapid deepening (overcorrection) of the calcium compensation depth associated with the Paleocene-Eocene thermal maximum. The benthic foraminiferal extinction event was a dramatic turnover of benthic foraminiferal species that occurred shortly after the onset of the Paleocene-Eocene thermal maximum. Opportunistic species such as Bulimina, which indicate environmental stress and lower oxygen conditions, are commonly associated with the Paleocene-Eocene thermal maximum. Environmental changes similar to those observed during the Paleocene-Eocene thermal maximum also characterize the third Eocene thermal maximum, based on the agglutinated and opportunistic species. The early Eocene climatic optimum is noted by the presence of foraminiferal assemblages that indicate a stable, warmer water mass, abundant food, and an influx of terrigenous material. The onset and end of the middle Eocene climatic optimum are recognized by the dominance of siliceous microfossils. This research updates the age and environmental interpretations of the Paleogene formations occurring in the vicinity of Mount Diablo, eastern San Francisco Bay area. The revised interpretations, which are based on foraminifers and calcareous nannoplankton, make it possible to identify various global climatic and biotic events.


2014 ◽  
Vol 13 ◽  
pp. 141-141
Author(s):  
Kirsty M. Edgar ◽  
Stephen M. Bohaty ◽  
Samantha J. Gibbs ◽  
Philip F. Sexton ◽  
Richard D. Norris ◽  
...  

Geology ◽  
2019 ◽  
Vol 47 (3) ◽  
pp. 247-250 ◽  
Author(s):  
Margot J. Cramwinckel ◽  
Robin van der Ploeg ◽  
Peter K. Bijl ◽  
Francien Peterse ◽  
Steven M. Bohaty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document