Nitrous oxide emission from agricultural soils in response to nitrification inhibitor and N-fertilizer amount

Author(s):  
Azeem Tariq ◽  
Klaus Steenberg Larsen ◽  
Line Vinther Hansen ◽  
Lars Stoumann Jensen ◽  
Sander Bruun

<p>Nitrogen (N) fertilization in agricultural soils significantly contributes to the atmospheric increase of nitrous oxide (N<sub>2</sub>O). Application of nitrification inhibitors (NIs) is a promising strategy to mitigate N<sub>2</sub>O emissions and improve N use efficiency in agricultural systems. We studied the effect of 3,4-dimethylpyrazol phosphate (DMPP) as an NI on N<sub>2</sub>O mitigation from soils with spring barley and spring rape. We used both manual and automatic chamber technologies to capture the spatial and temporal dynamics of N<sub>2</sub>O emissions. Intensive manual chamber measurements were conducted two months after fertilization and fortnightly afterwards. A mini-plot experiment with different levels (0 %, 50 %, 100 %, 150 %, and 200 %) of standard N fertilizer application and 100% N with NI was also conducted for two months in soil planted with spring barley. N<sub>2</sub>O emissions were affected by the N amount and by the use of NI. Higher emissions were observed in treatments with high N levels and without NI. The effect of NI in reducing N<sub>2</sub>O emissions from spring barley plots was significant in the small chamber experiments, where NI reduced N<sub>2</sub>O emissions by 47 % in the first two months after fertilization. However, the effect of NI on N<sub>2</sub>O reduction was non-significant in the full-plot chamber experiment for the whole season. In contrast, NI significantly reduced (56 %) the seasonal N<sub>2</sub>O emissions from the soils planted with spring rape. After the initial peaks following the fertilizer application, high N<sub>2</sub>O fluxes were observed following substantial rain events. The continuous flux measurements in automated chambers showed the dynamic of N<sub>2</sub>O changes during the whole season, including some peaks that were unobservable with manual chambers because of the low temporal resolution. The concentration of nitrate was higher in the soils treated with mineral N without NI compared to soils treated with NI, which clearly showed the inhibition of the nitrification process with the application of NI. The grain and biomass yield were not affected by the use of NI. In conclusion, application of NI is an efficient mitigation technology for N2O emissions in the period following the fertilizer application, but had little effect on subsequent emissions following rain events.</p><p>Keywords: nitrification inhibitors, DMPP, nitrous oxide, mitigation, agricultural soils</p>

2014 ◽  
Vol 11 (9) ◽  
pp. 13571-13603 ◽  
Author(s):  
W. X. Ding ◽  
Z. M. Chen ◽  
H. Y. Yu ◽  
J. F. Luo ◽  
G. Y. Yoo ◽  
...  

Abstract. A field experiment was designed to study the effects of nitrogen (N) source and urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) or nitrification inhibitor dicyandiamide (DCD) on nitrous oxide (N2O) emission and N use efficiency (NUE) in a sandy loam soil. Six treatments including no N fertilizer (control), N fertilizer urea alone (U), urea plus NBPT (NBPT), urea plus DCD (DCD), urea plus NBPT and DCD (NBPT + DCD), and nitrate-based fertilizer nitrophosphate (NP) were designed and implemented separately during the wheat growth period. Seasonal cumulative N2O emissions with urea alone amounted to 0.49 ± 0.12 and were significantly (P < 0.05) reduced to 0.28 ± 0.03, 0.31 ± 0.01 and 0.26 ± 0.01kg N2O-N ha−1 by application of DCD, NBPT and NBPT + DCD, respectively. Cumulative N2O emissions from NP were 0.28 ± 0.01kg N2O-N ha−1. A single N2O flux peak was identified following basal fertilization, and DCD and/or NBPT inhibition effects mainly occurred during the peak emission period. The NP application significantly (P < 0.05) increased wheat yield by 12.3% and NUE from 28.8% (urea alone) to 35.9%, while urease and/or nitrification inhibitors showed a slight increase effect. Our results clearly indicated that the application of urea as basal fertilizer, but not as supplemental fertilizer, together with DCD and NBPT is an effective practice to reduce N2O emissions. The application of NP instead of urea would be an optimum agricultural strategy for reducing N2O emissions and increasing crop yield and NUE for wheat cultivation in soils of the North China Plain.


Soil Research ◽  
2011 ◽  
Vol 49 (8) ◽  
pp. 696 ◽  
Author(s):  
Donna L. Giltrap ◽  
Surinder Saggar ◽  
Jagrati Singh ◽  
Mike Harvey ◽  
Andrew McMillan ◽  
...  

Nitrous oxide (N2O) from agricultural soils is a major source of greenhouse gas emissions in New Zealand. Nitrification inhibitors are seen as a potential technology to reduce these N2O emissions from agricultural soils. In previous studies on the effect of dicyandiamide (DCD) on N2O emissions from animal excreta, DCD was directly applied to urine. However, farmers apply DCD to grazed pastures shortly before or after grazing rather than applying it specifically to the urine patches. Accordingly, the objectives of this study were: (1) to test, using chamber measurements, whether the same level of N2O reduction is achieved under grazed conditions where excretal N is non-uniformly deposited, (2) to apply the process-based NZ-DNDC model to simulate the effect of DCD on emission reductions, and (3) to perform a sensitivity analysis on the NZ-DNDC model to investigate how uncertainties in the input parameters affect the modelled N2O emissions. Two circular 1260-m2 treatment plots were grazed simultaneously for 5 h, by 20 cattle on each plot. The following day, DCD was applied in 800 L of water to one of the plots at 10 kg/ha and N2O emissions were measured periodically for 20 days. The cumulative N2O emissions were 220 ± 90 and 110 ± 20 g N2O-N/ha for the untreated and DCD-treated plots, respectively (based on the arithmetic mean and standard error of the chambers). This suggests a reduction in N2O emission from DCD application of ~50 ± 40% from a single grazing event. However, this result should be treated with caution because the possibility of sampling error due to the chamber distribution cannot be excluded. NZ-DNDC simulated N2O emissions of 169 and 68 g N2O-N/ha for the untreated and DCD-treated areas, respectively, corresponding to a reduction of 60% in N2O emissions from DCD application. This level of reduction is consistent with that found in experiments with individual urine patches. N2O emissions found through use of NZ-DNDC were sensitive to uncertainties in the input parameters. The combined effect of varying the initial soil NO3– and NH4+, soil moisture, soil organic carbon, bulk density, clay content, pH, and water-filled pore-space at field capacity inputs within plausible ranges was to change the simulated N2O emissions by –87% to +150%.


2015 ◽  
Vol 12 (3) ◽  
pp. 803-815 ◽  
Author(s):  
W. X. Ding ◽  
Z. M. Chen ◽  
H. Y. Yu ◽  
J. F. Luo ◽  
G. Y. Yoo ◽  
...  

Abstract. A field experiment was designed to study the effects of nitrogen (N) source and urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) or nitrification inhibitor dicyandiamide (DCD) on nitrous oxide (N2O) emission and N use efficiency (NUE) in a sandy loam soil. Six treatments including no N fertilizer (control), N fertilizer urea alone (U), urea plus NBPT (NBPT), urea plus DCD (DCD), urea plus NBPT and DCD (NBPT plus DCD) and nitrate-based fertilizer nitrophosphate (NP) were designed and implemented separately during the wheat growth period. Seasonal cumulative N2O emissions with urea alone amounted to 0.49 ± 0.12 kg N2O-N ha−1 and were significantly (P < 0.05) reduced to 0.28 ± 0.03, 0.31 ± 0.01 and 0.26 ± 0.01 kg N2O-N ha−1 by application of DCD, NBPT and NBPT plus DCD, respectively. Cumulative N2O emissions from NP were 0.28 ± 0.01 kg N2O-N ha−1. A single N2O flux peak was identified following basal fertilization, and DCD and/or NBPT inhibition effects mainly occurred during the peak emission period. The NP application significantly (P < 0.05) increased wheat yield by 12.3% and NUE from 28.8% (urea alone) to 35.9%, while urease and/or nitrification inhibitors showed a slight increase effect. Our results clearly indicated that the application of urea as basal fertilizer, but not as supplemental fertilizer, together with DCD and NBPT is an effective practice to reduce N2O emissions. The application of NP instead of urea would be an optimum agricultural strategy for reducing N2O emissions and increasing crop yield and NUE for wheat cultivation in soils of the North China Plain.


2014 ◽  
Vol 100 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Ulrike Lebender ◽  
Mehmet Senbayram ◽  
Joachim Lammel ◽  
Hermann Kuhlmann

2008 ◽  
Vol 48 (2) ◽  
pp. 14 ◽  
Author(s):  
C. A. M. de Klein ◽  
R. J. Eckard

Nitrous oxide (N2O) emissions account for ~10% of global greenhouse gas (GHG) emissions, with most of these emissions (~90%) deriving from agricultural practices. Animal agriculture potentially contributes up to 50% of total agricultural N2O emissions. In intensive animal agriculture, high N2O emission rates generally coincide with anaerobic soil conditions and high soil NO3–, primarily from animal urine patches. This paper provides an overview of animal, feed-based and soil or management abatement technologies for ruminant animal agriculture targeted at reducing the size of the soil NO3– pool or improving soil aeration. Direct measurements of N2O emissions from potential animal and feed-based intervention technologies are scarce. However, studies have shown that they have the potential to reduce urinary N excretion by 3–60% and thus reduce associated N2O emissions. Research on the effect of soil and water management interventions is generally further advanced and N2O reduction potentials of up to 90% have been measured in some instances. Of the currently available technologies, nitrification inhibitors, managing animal diets and fertiliser management show the best potential for reducing emissions in the short-term. However, strategies should always be evaluated in a whole-system context, to ensure that reductions in one part of the system do not stimulate higher emissions elsewhere. Current technologies reviewed here could deliver up to 50% reduction from an animal housing system, but only up to 15% from a grazing-based system. However, given that enteric methane emissions form the majority of emissions from grazing systems, a 15% abatement of N2O is likely to translate to a 2–4% decrease in total GHG emissions at a farm scale. Clearly, further research is needed to develop technologies for improving N cycling and reducing N2O emissions from grazing-based animal production systems.


2011 ◽  
Vol 44 (6) ◽  
pp. 1207-1213 ◽  
Author(s):  
Hyun-Cheol Jeong ◽  
Gun-Yeob Kim ◽  
Deog-Bae Lee ◽  
Kyo-Moon Shim ◽  
Seul-Bi Lee ◽  
...  

2009 ◽  
Vol 6 (3) ◽  
pp. 5305-5337 ◽  
Author(s):  
M. Maljanen ◽  
P. Virkajärvi ◽  
J. Hytönen ◽  
M. Öquist ◽  
T. Sparrman ◽  
...  

Abstract. Agricultural soils are the most important sources for the greenhouse gas nitrous oxide (N2O), which is produced and emitted from soil also at low temperatures. The processes behind emissions at low temperatures are still poorly known. To simulate the effects of a reduction in snow depth on N2O emission in warming climate, snow pack was removed from three different agricultural soils (sand, mull, peat). Removal of snow lowered soil temperature and increased the extent and duration of soil frost which led to enhanced N2O emissions during freezing and thawing events in sand and mull soils. The cumulative emissions during the first year when snow was removed over the whole winter were 0.25, 0.66 and 3.0 g N2O-N m−2 yr−1 in control plots of sand, mull and peat soils, respectively. Without snow cover the respectively cumulative emissions were 0.37, 1.3 and 3.3 g N2O-N m−2 yr−1. Shorter snow manipulation during the second year did not increase the annual emissions. Only 20% of the N2O emission occurred during the growing season. Thus, highlighting the importance of the winter season for this exchange and that the year-round measurements of N2O emissions from boreal soils are integral for estimating their N2O source strength. N2O accumulated in the frozen soil during winter and the soil N2O concentration correlated with the depth of frost but not with the winter N2O emission rates per se. Also laboratory incubations of soil samples showed high production rates of N2O at temperatures below 0°C, especially in the sand and peat soils.


Author(s):  
Anna Jędrejek

The purpose of this study was to estimate nitrogen oxide emissions from soils used for agricultural purposes by voivodships. Compared N2O emissions were estimated according to the recommended IPCC (tier 1) method with simulated emissions using the DNDC (tier 3) model. Analyses were done for crop rotation (winter rape, winter wheat, winter wheat, winter triticale) in four cropping systems. Moreover, simulated N2O emissions from winter rape and winter triticale cultivation showed lower emissions and constituted 1475% and 13-76% of IPCC estimated emissions, respectively. The use of the model also enabled the determination of factors, which have an impact on nitrous oxide emissions and define its regional differentiation. The analysis showed that with increasing initial soil organic content, emissions of N2O rise and decrease with increasing precipitation or carbon sequestration. Considering the requirements for reduction GHG emissions, improving the methodology used in estimating nitrous oxide emissions is of significant practical value.


Sign in / Sign up

Export Citation Format

Share Document