Impact of mineral N fertilizer application rates on N2O emissions from arable soils under winter wheat

2014 ◽  
Vol 100 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Ulrike Lebender ◽  
Mehmet Senbayram ◽  
Joachim Lammel ◽  
Hermann Kuhlmann
2010 ◽  
Vol 7 (3) ◽  
pp. 4539-4563 ◽  
Author(s):  
X. R. Wei ◽  
M. D. Hao ◽  
X. H. Xue ◽  
P. Shi ◽  
A. Wang ◽  
...  

Abstract. Nitrous oxide (N2O) is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L.) field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK), manure (M), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + manure (NPM). Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, M slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK). Mineral and manure nitrogen fertilizer enhanced N2O emissions in wetter years compared to dryer years. Phosphorous fertilizer offset 0.78 and 1.98 kg N2O ha−1 increases, while manure + phosphorous offset 0.67 and 1.64 kg N2O ha−1 increases by N fertilizer for the two observation years. Our results suggested that the contribution of single N fertilizer on N2O emission was larger than that of NP and NPM and that manure and phosphorous had important roles in offsetting mineral N fertilizer induced N2O emissions. Relative to agricultural production and N2O emission, manure fertilization (M) should be recommended while single N fertilization (N) should be avoided for the highland winter wheat due to the higher biomass and grain yield and less N2O flux and annual emission in M than in N.


2010 ◽  
Vol 7 (10) ◽  
pp. 3301-3310 ◽  
Author(s):  
X. R. Wei ◽  
M. D. Hao ◽  
X. H. Xue ◽  
P. Shi ◽  
R. Horton ◽  
...  

Abstract. Nitrous oxide (N2O) is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L.) field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK), manure (M), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + manure (NPM). Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, m slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK). Mineral and manure nitrogen fertilizer enhanced N2O emissions in wetter years compared to dryer years. Phosphorous fertilizer offset 0.50 and 1.26 kg N2O-N ha−1 increases, while manure + phosphorous offset 0.43 and 1.04 kg N2O-N ha−1 increases by N fertilizer for the two observation years. Our results suggested that the contribution of single N fertilizer on N2O emission was larger than that of NP and NPM and that manure and phosphorous had important roles in offsetting mineral N fertilizer induced N2O emissions. Relative to agricultural production and N2O emission, manure fertilization (M) should be recommended while single N fertilization (N) should be avoided for the highland winter wheat due to the higher biomass and grain yield and lower N2O flux and annual emission in m than in N.


2011 ◽  
Vol 91 (4) ◽  
pp. 521-531 ◽  
Author(s):  
Xianglan Li ◽  
Noura Ziadi ◽  
Gilles Bélanger ◽  
Zucong Cai ◽  
Hua Xu

Li, X., Ziadi, N., Bélanger, G., Cai, Z. and Xu, H. 2011. Cadmium accumulation in wheat grain as affected by mineral N fertilizer and soil characteristics. Can. J. Soil Sci. 91: 521–531. Cadmium (Cd) is a heavy metal distributed in soil by natural processes and anthropogenic activities. It can accumulate in crops, such as spring milling wheat (Triticum aestivum L.), and its accumulation depends on crop species, soil factors, and agricultural practices like fertilizer inputs. Our objective was to study the effect of mineral N fertilizer and soil characteristics on wheat grain Cd concentration. A field study was conducted over 12 site-years (2004–2006) in Québec, with four N application rates (0, 40, 120, and 200 kg N ha−1). Wheat grain samples (n=192) were analysed for their Cd and N concentrations. Soil samples (n=48) taken before N fertilizer application were characterised for their chemical and physical properties, including Mehlich-3 extractable Cd concentration. Wheat grain Cd concentration increased significantly with increasing N application rates at 11 of the 12 site-years. Averaged across the 12 site-years, Cd concentration ranged from 53 µg kg−1dry matter (DM) without N applied up to 87 µg kg−1DM when 200 kg N ha−1was applied. Wheat grain Cd concentration also varied significantly with site-years (34–99 µg kg−1DM), but never exceeded the proposed tolerance for wheat grain of 235 µg kg−1DM. Wheat grain Cd concentration was significantly related to Mehlich-3 extractable Cd in soil (R2=0.44, P=0.021) and nitrogen nutrition index (R2=0.69, P=0.001). We conclude that soil Cd concentration and the crop N nutrition status affect Cd accumulation in spring wheat grain produced in eastern Canada.


2013 ◽  
Vol 10 (3) ◽  
pp. 1787-1797 ◽  
Author(s):  
M. H. Jeuffroy ◽  
E. Baranger ◽  
B. Carrouée ◽  
E. de Chezelles ◽  
M. Gosme ◽  
...  

Abstract. Approximately 65% of anthropogenic emissions of N2O, a potent greenhouse gas (GHG), originate from soils at a global scale, and particularly after N fertilisation of the main crops in Europe. Thanks to their capacity to fix atmospheric N2 through biological fixation, legumes can reduce N fertilizer use, and possibly N2O emissions. Nevertheless, the decomposition of crop organic matter during the crop cycle and residue decomposition, and possibly the N fixation process itself, could lead to N2O emissions. The objective of this study was to quantify N2O emissions from a dry pea crop (Pisum sativum, harvested at maturity) and from the subsequent crops in comparison with N2O emissions from wheat and oilseed rape crops, fertilized or not, in various rotations. A field experiment was conducted over 4 consecutive years to compare the emissions during the pea crop, in comparison with those during the wheat (fertilized or not) or oilseed rape crops, and after the pea crop, in comparison with other preceding crops. N2O fluxes were measured using static chambers. In spite of low N2O fluxes, mainly due to the site's soil characteristics, fluxes during the crop were significantly lower for pea and unfertilized wheat than for fertilized wheat and oilseed rape. The effect of the preceding crop was not significant, while soil mineral N at harvest was higher after the pea crop. These results should be confirmed over a wider range of soil types. Nevertheless, they demonstrate the absence of N2O emissions linked to the symbiotic N fixation process, and allow us to estimate the decrease in N2O emissions by 20–25% through including one pea crop in a three-year rotation. On a larger scale, this reduction of GHG emissions at field level has to be added to the decrease due to the reduced production and transport of the N fertilizer not applied to the pea crop.


2020 ◽  
Vol 158 (1-2) ◽  
pp. 65-79
Author(s):  
J. Macholdt ◽  
H.-P. Piepho ◽  
B. Honermeier ◽  
S. Perryman ◽  
A. Macdonald ◽  
...  

AbstractThe development of resilient cropping systems with high yield stability is becoming increasingly important due to future climatic and agronomic challenges. Consequently, it is essential to compare the effects of different agronomic management practices, such as cropping sequences and nutrient supply, on the stability of crop yields. Long-term experiments are a valuable resource for investigating these effects, as they provide enough time to accurately estimate stability parameters. The objective of the current study was to compare the effects of different cropping sequencing (#1: continuous v. rotational), fertilization (#2: mineral v. organic) and straw management techniques (in the case of continuous wheat; #3: removal v. incorporation) on the yield stability of winter wheat; yield risk (the probability of yield falling below a threshold yield level) and inter-annual yield variability were used as stability indicators of the effects. Long-term yield data from the Broadbalk Wheat Experiment (Rothamsted, UK) were analysed using a mixed model. Overall, the results showed that rotational cropping combined with sufficient mineral N fertilizer, with or without organic manure, ensured stable wheat yields while reducing yield risk. In contrast, higher yield risks and inter-annual yield variabilities were found in continuous wheat sections with less mineral N fertilizer or with organic manure only.


2019 ◽  
Vol 114 (3) ◽  
pp. 173-191 ◽  
Author(s):  
Ivan Guzman-Bustamante ◽  
Thomas Winkler ◽  
Rudolf Schulz ◽  
Torsten Müller ◽  
Thomas Mannheim ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
F. Mintah ◽  
Y. Z. Mohammed ◽  
S. Lamptey ◽  
B. D. K. Ahiabor

Inoculating groundnut and cowpea with highly effective and competitive rhizobial strain improves nodulation. A field experiment was carried out at the experimental field of the Faculty of Agriculture, University for Development Studies, Nyankpala, to evaluate the growth and yield responses of cowpea and groundnut to five rhizobial inoculant strains in the Guinea Savanna zone. The experiment was laid out in a randomized complete block design (RCBD) with eight (8) treatments replicated four (4) times. The treatments included five rhizobial inoculant strains (NC 92, KNUST 1002, KNUST 1003, KNUST 1006, and BR 3267), two N fertilizer levels (20 kg·N/ha and 40 kg·N/ha), and a control. The results showed that rhizobial inoculation and N fertilizer application increased nodulation, biomass yield, pod number, pod weight, hundred seed weight, nodule dry weight, and pod yield of groundnut compared with the control. Rhizobial inoculation averagely increased the nodulation and yield by 63 and 67%, respectively, compared with the control. Mineral N fertilizer (20 kg N/ha) on average increased the nodulation and yield by 24 and 25%, respectively, compared with the control plots. It can be recommended from this study that, in the absence of highly competitive rhizobial strains such as KNUST 1006 and NC 92 as biofertilizers for increasing the nodulation and yield of cowpea and groundnut, 20 kg·N/ha can be used for the purpose. Further research is recommended using these rhizobial strains in combination with lower rates of N fertilizers (<20 kg·ha−1).


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jacob T. Bushong ◽  
D. Brian Arnall ◽  
William R. Raun

Preplant irrigation can impact fertilizer management in winter wheat. The objective of this study was to evaluate the main and interactive effects of preplant irrigation, N fertilizer application timing, and different N, P, and K fertilizer treatments on grain yield and WUE. Several significant two-way interactions and main effects of all three factors evaluated were observed over four growing seasons for grain yield and WUE. These effects could be described by differences in rainfall and soil moisture content among years. Overall, grain yield and WUE were optimized, if irrigation or adequate soil moisture were available prior to planting. For rain-fed treatments, the timing of N fertilizer application was not as important and could be applied before planting or topdressed without much difference in yield. The application of P fertilizer proved to be beneficial on average years but was not needed in years where above average soil moisture was present. There was no added benefit to applying K fertilizer. In conclusion, N and P fertilizer management practices may need to be altered yearly based on changes in soil moisture from irrigation and/or rainfall.


2014 ◽  
Vol 153 (3) ◽  
pp. 422-431 ◽  
Author(s):  
K. CHENG ◽  
M. YAN ◽  
D. NAYAK ◽  
G. X. PAN ◽  
P. SMITH ◽  
...  

SUMMARYAssessing carbon footprint (CF) of crop production in a whole crop life-cycle could provide insights into the contribution of crop production to climate change and help to identify possible greenhouse gas (GHG) mitigation options. In the current study, data for the major crops of China were collected from the national statistical archive on cultivation area, yield, application rates of fertilizer, pesticide, diesel, plastic film, irrigated water, etc. The CF of direct and indirect carbon emissions associated with or caused by these agricultural inputs was quantified with published emission factors. In general, paddy rice, wheat, maize and soybean of China had mean CFs of 2472, 794, 781 and 222 kg carbon equivalent (CE)/ha, and 0·37, 0·14, 0·12 and 0·10 kg CE/kg product, respectively. For dry crops (i.e. those grown without flooding the fields: wheat, maize and soybean), 0·78 of the total CFs was contributed by nitrogen (N) fertilizer use, including both direct soil nitrous oxide (N2O) emission and indirect emissions from N fertilizer manufacture. Meanwhile, direct methane (CH4) emissions contributed 0·69 on average to the total CFs of flooded paddy rice. Moreover, the difference in N fertilizer application rates explained 0·86–0·93 of the provincial variations of dry crop CFs while that in CH4 emissions could explain 0·85 of the provincial variation of paddy rice CFs. When a 30% reduction in N fertilization was considered, a potential reduction in GHGs of 60 megatonne (Mt) carbon dioxide equivalent from production of these crops was projected. The current work highlights opportunities to gain GHG emission reduction in production of crops associated with good management practices in China.


Sign in / Sign up

Export Citation Format

Share Document