Underplating altered oceanic crust: Insights from numerical modelling

Author(s):  
Zoe Braden ◽  
Jonas B. Ruh ◽  
Whitney M. Behr

<p>Observations of several active shallow subduction megathrusts suggest that they are localized as décollements within sedimentary sequences or at the contact between sedimentary layers and the underlying mafic oceanic crust.  Exhumed accretionary complexes from a range of subduction depths, however, preserve underplated mafic slivers, which indicate that megathrust faults can occasionally develop within the mafic oceanic crustal column. The incorporation of mafic rocks into the subduction interface shear zone has the potential to influence both long-term subduction dynamics and short-term seismic and transient slip behaviour, but the processes and conditions that favour localisation of the megathrust into deeper oceanic crustal levels are poorly understood.</p><p>In this work, we use visco-elasto-plastic numerical modelling to explore the long-term (million year) factors influencing the incorporation of mafic volcanic rocks into the subduction interface and accretionary wedge through underplating. We focus on the potential importance of oceanic seafloor alteration in facilitating oceanic crustal weakening, which is implemented through a temperature-dependent pore-fluid pressure ratio (lambda = 0.90-0.99 between 160 and 300oC). We then examine the underplating response to changes in sediment thickness, geothermal gradient, sediment fluid pressure, and surface erosion rates. Our results indicate that a thinner incoming sediment package and a lower geothermal gradient cause oceanic crustal underplating to initiate deeper beneath the backstop (overriding plate) compared to thicker incoming sediment and a higher geothermal gradient. Relative pore fluid pressure differences between sediments and altered oceanic crust control the amount of altered oceanic crust that is underplated, as well as the location of underplating beneath the backstop or accretionary wedge. When sediments on top of the altered oceanic crust have the same fluid pressure as the altered oceanic crust, no oceanic crustal underplating occurs. Modelling results are also compared to exhumed subduction complexes to examine the amount and distribution of underplated mafic rocks.</p>

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kodai Nakagomi ◽  
Toshiko Terakawa ◽  
Satoshi Matsumoto ◽  
Shinichiro Horikawa

An amendment to this paper has been published and can be accessed via the original article.


2019 ◽  
Vol 767 ◽  
pp. 228168 ◽  
Author(s):  
Melodie E French ◽  
Greg Hirth ◽  
Keishi Okazaki

2012 ◽  
Vol 117 (B5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Luca Malagnini ◽  
Francesco Pio Lucente ◽  
Pasquale De Gori ◽  
Aybige Akinci ◽  
Irene Munafo'

Geology ◽  
2018 ◽  
Vol 46 (4) ◽  
pp. 299-302 ◽  
Author(s):  
Jiyao Li ◽  
Donna J. Shillington ◽  
Demian M. Saffer ◽  
Anne Bécel ◽  
Mladen R. Nedimović ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1784 ◽  
Author(s):  
Heping Shu ◽  
Jinzhu Ma ◽  
Haichao Yu ◽  
Marcel Hürlimann ◽  
Peng Zhang ◽  
...  

Debris flows that involve loess material produce important damage around the world. However, the kinematics of such processes are poorly understood. To better understand these kinematics, we used a flume to measure the kinematics of debris flows with different mixture densities and weights. We used sensors to measure pore fluid pressure and total normal stress. We measured flow patterns, velocities, and depths using a high-speed camera and laser range finder to identify the temporal evolution of the flow behavior and the corresponding peaks. We constructed fitting functions for the relationships between the maximum values of the experimental parameters. The hydrographs of the debris flows could be divided into four phases: increase to a first minor peak, a subsequent smooth increase to a second peak, fluctuation until a third major peak, and a final continuous decrease. The flow depth, velocity, total normal stress, and pore fluid pressure were strongly related to the mixture density and total mixture weight. We defined the corresponding relationships between the flow parameters and mixture kinematics. Linear and exponential relationships described the maximum flow depth and the mixture weight and density, respectively. The flow velocity was linearly related to the weight and density. The pore fluid pressure and total normal stress were linearly related to the weight, but logarithmically related to the density. The regression goodness of fit for all functions was >0.93. Therefore, these functions are accurate and could be used to predict the consequences of loess debris flows. Our results provide an improved understanding of the effects of mixture density and weight on the kinematics of debris flows in loess areas, and can help landscape managers prevent and design improved engineering solutions.


2019 ◽  
Vol 124 (9) ◽  
pp. 9526-9545 ◽  
Author(s):  
Tiange Xing ◽  
Wenlu Zhu ◽  
Melodie French ◽  
Ben Belzer

Sign in / Sign up

Export Citation Format

Share Document