Identifying the regional impact of deep thermogenic gas on aquifers in Alberta, Canada by  comparing multilayered isoscape maps of domestic water wells and fugitive gases from energy wells

Author(s):  
Gabriela Gonzalez Arismendi ◽  
Karlis Muehlenbachs

<p>The origin and distribution of unwanted thermogenic gas in aquifers and domestic water wells in petroliferous basins are of continuing concern. Most published studies to date consider only a few water wells with little or no information on fugitive gases from nearby energy wells.   We mapped δ<sup>13</sup>C of  hydrocarbons in 1,124  domestic water wells and fugitive gases (many thousands) from energy wells of Alberta, Canada.  About 90% of the water wells that exsolve hydrocarbons produce methane derived locally by microbes. The δ13C of these biogenic methanes vary regionally and follows topography,  suggesting in situ generation of methane within a flowing aquifer perhaps following a Rayleigh constrained generation process. Some domestic water wells have free thermogenic butanes, propane and ethanes indicating the impact of thermogenic gas on the aquifer.  The δ<sup>13</sup>C of these thermogenic sourced gases impacting domestic water wells matches those of nearby energy wells indicating their failure as the ultimate source of thermogenic gas in domestic water wells.  The impacted water wells are geographically grouped. Our regional mapping of hydrocarbon gases in domestic water wells has identified specific, kilometre scale regions needing detailed hydrogeological and geochemical investigation.</p>

Author(s):  
Kazumasa Funabiki ◽  
Toshiya Gotoh ◽  
Ryunosuke Kani ◽  
Toshiyasu Inuzuka ◽  
Yasuhiro Kubota

A highly diastereo- and enantioselective organocatalytic method to synthesise erythritols bearing a trifluoromethyl group has been investigated.


2011 ◽  
Author(s):  
Percy L. Donaghay ◽  
Jan Rines ◽  
James Sullivan
Keyword(s):  

2020 ◽  
Vol 24 ◽  
Author(s):  
Wengui Wang ◽  
Shoufeng Wang

Abstract:: Minisci-type reactions have become widely known as reactions that involve the addition of carbon-centered radicals to basic heteroarenes followed by formal hydrogen atom loss. While the originally developed protocols for radical generation remain in active use today, in recent years by a new array of radical generation strategies allow use of a wider variety of radical precursors that often operate under milder and more benign conditions. New transformations based on free radical reactivity are now available to a synthetic chemist looking to utilize a Minisci-type reaction. Radical-generation methods based on photoredox catalysis and electrochemistry, which utilize thermal cleavage or the in situ generation of reactive radical precursors, have become popular approaches. Our review will cover the remarkably literature that has appeared on this topic in recent 5 years, from 2015-01 to 2020-01, in an attempt to provide guidance to the synthetic chemist, on both the challenges that have been overcome and applications in organic synthesis.


2021 ◽  
Author(s):  
Thomas Richards ◽  
Jonathan H. Harrhy ◽  
Richard J. Lewis ◽  
Alexander G. R. Howe ◽  
Grzegorz M. Suldecki ◽  
...  

2021 ◽  
Vol 23 (3) ◽  
pp. 1130-1134
Author(s):  
Haibo Mei ◽  
Li Wang ◽  
Romana Pajkert ◽  
Qian Wang ◽  
Jingcheng Xu ◽  
...  

Materialia ◽  
2021 ◽  
Vol 15 ◽  
pp. 100993
Author(s):  
N. Armstrong ◽  
P.A. Lynch ◽  
P. Cizek ◽  
S.R. Kada ◽  
S. Slater ◽  
...  

2014 ◽  
Vol 1038 ◽  
pp. 75-81
Author(s):  
Bernd Niese ◽  
Philipp Amend ◽  
Uwe Urmoneit ◽  
Stephan Roth ◽  
Michael Schmidt

Embedding stereolithography (eSLA) is an additive, hybrid process, which provides a flexible production of 3D components and the ability to integrate electrical and optical conductive structures and functional components within parts. However, the embedding of conductive circuits in stereolithography (SLA) parts assumes usage of process technologies, which enables their direct integration of conductive circuits during the layer-wise building process. In this context, a promising method for in-situ generation of conductive circuits is dispensing of conductive adhesive on the current surface of the SLA part and its subsequent sintering. In this paper, the laser sintering (λ = 355 nm) of conductive adhesive mainly consisting of silver nanoparticles is investigated. The work intends to evaluate the curing behavior of the conductive adhesive, the beam-matter-interactions and the thermal damage of the SLA substrate. The investigations revealed a fast and flexible laser sintering process for the generation of conductive circuits with sufficient electrical conductivity and sufficient current capacity load. In this context, a characterization of the conductive structures is done by measuring their electrical resistance and their potential current capacity load.


Sign in / Sign up

Export Citation Format

Share Document