scholarly journals A remarkable discovery of electrum on the island of Sylt, northern Germany, and its Scandinavian origin

2021 ◽  
Vol 33 (4) ◽  
pp. 373-387
Author(s):  
Jochen Schlüter ◽  
Stephan Schuth ◽  
Raúl O. C. Fonseca ◽  
Daniel Wendt

Abstract. An electrum–quartz pebble with a weight of 10.4 g was discovered in a cliff of Saalian glaciogenic sediments on the west coast of the German North Sea island of Sylt in 2012. It has a roundish water-worn appearance and consists of intergrown electrum and milky quartz. It is the largest known electrum find in Germany, and regarding its weight it also ranks amongst the largest gold finds discovered in Germany. We document and characterize this unusual discovery. Furthermore, an attempt is made to investigate its provenance. Therefore, reference samples of southern Scandinavian gold and electrum deposits and occurrences have been studied and compared to the Sylt find. The Au–Ag content determined by electron microprobe (EMP), trace element signature measured by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and Pb isotope compositions by multi-collector ICP MS (MC-ICP-MS) suggest a southern Norwegian origin. The most probable source might be the Kongsberg ore district or an adjacent, yet undiscovered, mineralization in the Oslo region. In general, Saalian glaciogenic sediments in Schleswig-Holstein (northern Germany) are dominated by rocks of Swedish provenance. Due to the intake of older Elsterian sediments by younger Saalian glaciers, southern Norwegian rocks are also not uncommon in Saalian sediments. A Saalian ice advance or a combination of Elsterian and Saalian ice advances might have provided a transport mechanism for an electrum sample from a south Norwegian mineralization to the island of Sylt.

2020 ◽  
Vol 115 (6) ◽  
pp. 1213-1226 ◽  
Author(s):  
Alexander E. Marfin ◽  
Alexei V. Ivanov ◽  
Vadim S. Kamenetsky ◽  
Adam Abersteiner ◽  
Tamara Yu. Yakich ◽  
...  

Abstract The Norilsk-Talnakh ore district in the northwestern Siberian platform contains globally unique reserves of Cu-Ni-sulfides with Pt and, especially, Pd. The Oktyabrsk deposit, which is one of the largest in the district, is spatially and genetically associated with the Kharaelakh mafic-ultramafic intrusion and its exceptionally large metamorphic and metasomatic aureoles. In this study, we employed in situ laser ablation-inductively coupled plasma-mass spectrometry U-Pb isotope dating of apatite, titanite, garnet, and perovskite that cocrystallize with disseminated sulfides within the aureole of metasomatic and contact metamorphic rocks. The calculated isotopic ages for apatite (257.3 ± 4.5 and 248.9 ± 5.1 Ma), titanite (248.6 ± 6.8 and 249.1 ± 2.9 Ma), garnet (260.0 ± 11.0 Ma), and perovskite (247.3 ± 8.2 Ma), though with large uncertainties, indicate that sulfide mineralization within metasomatic and contact-metamorphic rocks is coeval with the emplacement of the Kharaelakh intrusion. These isotopic dates are in complete agreement with the published isotope dilution-thermal ionization mass spectrometry U-Pb zircon ages for the Norilsk intrusions and, at the same time, notably older than available Re-Os isochron ages of sulfides. The latter ages have been long interpreted as evidence for a prolonged duration of magmatic ore-forming processes; however, our data narrow their life span. Trace elements in titanite and garnet allow distinguishing late- and postmagmatic grains, which show indistinguishable U-Pb isotope ages.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document