scholarly journals New Developments in Ensemble-based Probabilistic Forecasting of Solar Radiation: The WRF-Solar Ensemble Prediction System

2021 ◽  
Author(s):  
Manajit Sengupta ◽  
Pedro Jimenez ◽  
Jaemo Yang ◽  
Ju-Hye Kim ◽  
Yu Xie

<p>The demand for increased accuracy in predicting solar power has grown considerably over recent years due to a rapid growth in grid-tied solar generation both utility scale and distributed. To increase confidence in forecasting solar power there is a need to provide reliable probabilistic solar radiation information that also minimizes error and uncertainty. Funded by the U.S. Department of Energy, the Weather Research and Forecasting (WRF)-Solar ensemble prediction system (WRF-Solar EPS) has been recently developed by a collaboration between the National Renewable Energy Laboratory and the National Center for Atmospheric Research. The WRF-Solar EPS is now ready to be disseminated to support the integration of solar generation resources and improve accuracy of day-ahead and intraday probabilistic solar forecasts. The first stage of our framework in developing WRF-Solar EPS required a specially designed method using a tangent linear (TL) sensitivity analysis to efficiently investigate uncertainties of WRF-Solar variables in forecasting clouds and solar irradiance. For the second stage, we applied a methodology to introduce stochastic perturbations in 14 key variables ascertained through the TL sensitivity analysis in generating ensemble members. A user-friendly interface is provided in WRF-Solar EPS, in which the parameters of stochastic perturbations can be controlled by configuration files. Lastly, we implemented an analog technique as an ensemble post-processing method to improve the performance of ensemble solar irradiance forecasts. This presentation will summarize the work performed in the past 3 years to understand the interactions between cloud physics, land surface, boundary layer and radiative transfer models through the development of a probabilistic cloud optimized day-ahead forecasting system based on WRF-Solar. For evaluation of forecasts, we adapt and use satellite-derived solar radiation data, e.g., the National Solar Radiation Data Base (NSRDB) as well as ground-measured observations. A comprehensive analysis to assess gridded model outputs over the Contiguous U.S is performed. The importance of evaluation of the WRF-Solar model with the NSRDB lies in the fact that the knowledge of the cloud-caused uncertainties in predicting solar irradiance over a wide range of regions provides model developers a detailed understanding of model strength and weaknesses in predicting clouds. Overall, we will present the detailed research steps that resulted in the development of the WRF-Solar EPS. We will also present a detailed validation demonstrating the improvements provided by this model. Moreover, we will also introduce the user’s guide for WRF-Solar EPS and future extension of this research.</p>

2008 ◽  
Vol 136 (2) ◽  
pp. 443-462 ◽  
Author(s):  
Xiaoli Li ◽  
Martin Charron ◽  
Lubos Spacek ◽  
Guillem Candille

Abstract A regional ensemble prediction system (REPS) with the limited-area version of the Canadian Global Environmental Multiscale (GEM) model at 15-km horizontal resolution is developed and tested. The total energy norm singular vectors (SVs) targeted over northeastern North America are used for initial and boundary perturbations. Two SV perturbation strategies are tested: dry SVs with dry simplified physics and moist SVs with simplified physics, including stratiform condensation and convective precipitation as well as dry processes. Model physics uncertainties are partly accounted for by stochastically perturbing two parameters: the threshold vertical velocity in the trigger function of the Kain–Fritsch deep convection scheme, and the threshold humidity in the Sundqvist explicit scheme. The perturbations are obtained from first-order Markov processes. Short-range ensemble forecasts in summer with 16 members are performed for five different experiments. The experiments employ different perturbation and piloting strategies, and two different surface schemes. Verification focuses on quantitative precipitation forecasts and is done using a range of probabilistic measures. Results indicate that using moist SVs instead of dry SVs has a stronger impact on precipitation than on dynamical fields. Forecast skill for precipitation is greatly influenced by the dominant synoptic weather systems. For stratiform precipitation caused by strong baroclinic systems, the forecast skill is improved in the moist SV experiments relative to the dry SV experiments. For convective precipitation rates in the range 15–50 mm (24 h)−1 produced by weak synoptic baroclinic systems, all experiments exhibit noticeably poorer forecast skills. Skill improvements due to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) surface scheme and stochastic perturbations are also observed.


2021 ◽  
Author(s):  
Ju-Hye Kim ◽  
Pedro A. Jimenez ◽  
Manajit Sengupta ◽  
Jaemo Yang ◽  
Jimy Dudhia ◽  
...  

2020 ◽  
Vol 162 ◽  
pp. 1321-1339
Author(s):  
Josselin Le Gal La Salle ◽  
Jordi Badosa ◽  
Mathieu David ◽  
Pierre Pinson ◽  
Philippe Lauret

2012 ◽  
Vol 4 (1) ◽  
pp. 65
Author(s):  
Xiao Yu-Hua ◽  
He Guang-Bi ◽  
Chen Jing ◽  
Deng Guo

2012 ◽  
Vol 27 (3) ◽  
pp. 757-769 ◽  
Author(s):  
James I. Belanger ◽  
Peter J. Webster ◽  
Judith A. Curry ◽  
Mark T. Jelinek

Abstract This analysis examines the predictability of several key forecasting parameters using the ECMWF Variable Ensemble Prediction System (VarEPS) for tropical cyclones (TCs) in the North Indian Ocean (NIO) including tropical cyclone genesis, pregenesis and postgenesis track and intensity projections, and regional outlooks of tropical cyclone activity for the Arabian Sea and the Bay of Bengal. Based on the evaluation period from 2007 to 2010, the VarEPS TC genesis forecasts demonstrate low false-alarm rates and moderate to high probabilities of detection for lead times of 1–7 days. In addition, VarEPS pregenesis track forecasts on average perform better than VarEPS postgenesis forecasts through 120 h and feature a total track error growth of 41 n mi day−1. VarEPS provides superior postgenesis track forecasts for lead times greater than 12 h compared to other models, including the Met Office global model (UKMET), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Global Forecasting System (GFS), and slightly lower track errors than the Joint Typhoon Warning Center. This paper concludes with a discussion of how VarEPS can provide much of this extended predictability within a probabilistic framework for the region.


2009 ◽  
Vol 24 (3) ◽  
pp. 812-828 ◽  
Author(s):  
Young-Mi Min ◽  
Vladimir N. Kryjov ◽  
Chung-Kyu Park

Abstract A probabilistic multimodel ensemble prediction system (PMME) has been developed to provide operational seasonal forecasts at the Asia–Pacific Economic Cooperation (APEC) Climate Center (APCC). This system is based on an uncalibrated multimodel ensemble, with model weights inversely proportional to the errors in forecast probability associated with the model sampling errors, and a parametric Gaussian fitting method for the estimate of tercile-based categorical probabilities. It is shown that the suggested method is the most appropriate for use in an operational global prediction system that combines a large number of models, with individual model ensembles essentially differing in size and model weights in the forecast and hindcast datasets being inconsistent. Justification for the use of a Gaussian approximation of the precipitation probability distribution function for global forecasts is also provided. PMME retrospective and real-time forecasts are assessed. For above normal and below normal categories, temperature forecasts outperform climatology for a large part of the globe. Precipitation forecasts are definitely more skillful than random guessing for the extratropics and climatological forecasts for the tropics. The skill of real-time forecasts lies within the range of the interannual variability of the historical forecasts.


2019 ◽  
Vol 32 (3) ◽  
pp. 957-972 ◽  
Author(s):  
Takeshi Doi ◽  
Swadhin K. Behera ◽  
Toshio Yamagata

This paper explores merits of 100-ensemble simulations from a single dynamical seasonal prediction system by evaluating differences in skill scores between ensembles predictions with few (~10) and many (~100) ensemble members. A 100-ensemble retrospective seasonal forecast experiment for 1983–2015 is beyond current operational capability. Prediction of extremely strong ENSO and the Indian Ocean dipole (IOD) events is significantly improved in the larger ensemble. It indicates that the ensemble size of 10 members, used in some operational systems, is not adequate for the occurrence of 15% tails of extreme climate events, because only about 1 or 2 members (approximately 15% of 12) will agree with the observations. We also showed an ensemble size of about 50 members may be adequate for the extreme El Niño and positive IOD predictions at least in the present prediction system. Even if running a large-ensemble prediction system is quite costly, improved prediction of disastrous extreme events is useful for minimizing risks of possible human and economic losses.


Sign in / Sign up

Export Citation Format

Share Document