The Characterizing Exoplanet Satellite (CHEOPS): news and first results

2020 ◽  
Author(s):  
Monika Lendl

<p>The Characterizing Exoplanets Satellite (CHEOPS) is the first ESA space mission dedicated primarily to the study of exoplanetary systems. The satellite, carrying a 30cm photometric telescope, has been launched successfully in December 2019 and has seen first light in January 2020. Throughout it's nominal mission of 3.5 years, it will perform ultra-high precision photometry of bright stars know to host extrasolar planets. Next to searching for transits of planets known from radial velocities and measuring precise radii of known transiting planets, CHEOPS will dedicate approximately 25% of its observing time to characterizing exoplanet atmospheres. </p> <p>In this talk, I will describe the CHEOPS space mission, summarize its scientific program and detail how we will use CHEOPS to probe exoplanet atmospheres, such as optical-light occultations and planetary phase curves. After introducing the mission, I will give an update on it's current status, performances and show first results. I will conclude by discussing synergies with other facilities, both ground- and space-based, and illustrate how together they will advance our global understanding of planetary atmospheres.</p>

2020 ◽  
Author(s):  
Anastasia Kokori

<div dir="ltr">The ExoClock Project (www.exoclock.space) is an open, integrated, and interactive platform, designed to maintain the ephemerides accuracy of the Ariel targets. Ariel is ESA's medium class space mission prepared for launch in 2028. The main aim of the mission is to characterise a large number of exoplanets to better understand their nature. ExoClock aims to provide transit mid-time predictions for Ariel by collecting all currently available data (literature observations, observations conducted for other purposes, both from ground and space) and by efficiently planning dedicated efforts to follow-up the riel targets. ExoClock is open to contributions from a variety of audiences —  professional, amateur and industry partners — aiming to make the best use of all available resources towards delivering a verified list of ephemerides for the Ariel targets before the launch of the mission. </div> <div>In this presentation strategies, tools and the current status of the ExoClock project will be described in detail. In addition, the first results will be presented briefly and finally, lessons learned and the potential of using similar strategies in other projects will be discussed.</div>


2021 ◽  
Author(s):  
Anastasia Kokori

<div class="gs"> <div class=""> <div id=":6dj" class="ii gt"> <div id=":6dk" class="a3s aiL "> <div dir="ltr">The ExoClock Project (www.exoclock.space) is an open, integrated, and interactive platform, designed to maintain the ephemerides accuracy of the Ariel targets. Ariel is ESA's medium class space mission prepared for launch in 2028 to study a large number of exoplanets to better understand their nature. ExoClock aims to monitor the Ariel targets and provide transit timings to increase the mission efficiency.  <div>In the project we use all currently available data (literature observations, observations conducted for other purposes, both from ground and space) to make the best use of resources. ExoClock is open to contributions from a variety of audiences — professional, amateur and industry partners — and it aims to continuous monitor the Ariel targets with a verified list of ephemerides. Apart from its role to support Ariel, ExoClock acts as a service by providing the verified ephemerides for further use by the wide exoplanet community. In this presentation the nature, updates and the current status of the ExoClock project will be described in detail. Moreover, the first results will be presented briefly and finally, strategies and lessons learned from the operation of the project so far will be shared with the community. <div class="yj6qo"> </div> <div class="adL"> </div> </div> </div> <div class="adL"> </div> </div> </div> <div class="hi"> </div> </div> </div>


2018 ◽  
Vol 619 ◽  
pp. A150 ◽  
Author(s):  
M. Oshagh ◽  
A. H. M. J. Triaud ◽  
A. Burdanov ◽  
P. Figueira ◽  
A. Reiners ◽  
...  

One of the most powerful methods used to estimate sky-projected spin-orbit angles of exoplanetary systems is through a spectroscopic transit observation known as the RossiterMcLaughlin (RM) effect. So far mostly single RM observations have been used to estimate the spin-orbit angle, and thus there have been no studies regarding the variation of estimated spin-orbit angle from transit to transit. Stellar activity can alter the shape of photometric transit light curves and in a similar way they can deform the RM signal. In this paper we present several RM observations, obtained using the HARPS spectrograph, of known transiting planets that all transit extremely active stars, and by analyzing them individually we assess the variation in the estimated spin-orbit angle. Our results reveal that the estimated spin-orbit angle can vary significantly (up to ~42°) from transit to transit, due to variation in the configuration of stellar active regions over different nights. This finding is almost two times larger than the expected variation predicted from simulations. We could not identify any meaningful correlation between the variation of estimated spin-orbit angles and the stellar magnetic activity indicators. We also investigated two possible approaches to mitigate the stellar activity influence on RM observations. The first strategy was based on obtaining several RM observations and folding them to reduce the stellar activity noise. Our results demonstrated that this is a feasible and robust way to overcome this issue. The second approach is based on acquiring simultaneous high-precision short-cadence photometric transit light curves using TRAPPIST/SPECULOOS telescopes, which provide more information about the stellar active region’s properties and allow a better RM modeling.


2002 ◽  
Vol 17 (12n13) ◽  
pp. 1799-1808 ◽  
Author(s):  
MARCO TAVANI

Gamma-ray astrophysics in the energy range between 30 MeV and 30 GeV is in desperate need of arcminute angular resolution and source monitoring capability. The AGILE Mission planned to be operational in 2004-2006 will be the only space mission entirely dedicated to gamma-ray astrophysics above 30 MeV. The main characteristics of AGILE are the simultaneous X-ray and gamma-ray imaging capability (reaching arcminute resolution) and excellent gamma-ray timing (10-100 microseconds). AGILE scientific program will emphasize a quick response to gamma-ray transients and multiwavelength studies of gamma-ray sources.


2019 ◽  
Vol 49 (1) ◽  
pp. 184-187
Author(s):  
Marc O. Herdrich ◽  
Andreas Fleischmann ◽  
Daniel Hengstler ◽  
Steffen Allgeier ◽  
Christian Enss ◽  
...  

2020 ◽  
Vol 635 ◽  
pp. A22 ◽  
Author(s):  
A. Deline ◽  
D. Queloz ◽  
B. Chazelas ◽  
M. Sordet ◽  
F. Wildi ◽  
...  

Context. The characterisation of Earth-size exoplanets through transit photometry has stimulated new generations of high-precision instruments. In that respect, the Characterising Exoplanet Satellite (CHEOPS) is designed to perform photometric observations of bright stars to obtain precise radii measurements of transiting planets. The CHEOPS instrument will have the capability to follow up bright hosts provided by radial-velocity facilities. With the recent launch of the Transiting Exoplanet Survey Satellite (TESS), CHEOPS may also be able to confirm some of the long-period TESS candidates and to improve the radii precision of confirmed exoplanets. Aims. The high-precision photometry of CHEOPS relies on careful on-ground calibration of its payload. For that purpose, intensive pre-launch campaigns of measurements were carried out to calibrate the instrument and characterise its photometric performances. This work reports on the main results of these campaigns. It provides a complete analysis of data sets and estimates in-flight photometric performance by means of an end-to-end simulation. Instrumental systematics were measured by carrying out long-term calibration sequences. Using an end-to end model, we simulated transit observations to evaluate the impact of in-orbit behaviour of the satellite and to determine the achievable precision on the planetary radii measurement. Methods. After introducing key results from the payload calibration, we focussed on the data analysis of a series of long-term measurements of uniformly illuminated images. The recorded frames were corrected for instrumental effects and a mean photometric signal was computed on each image. The resulting light curve was corrected for systematics related to laboratory temperature fluctuations. Transit observations were simulated, considering the payload performance parameters. The data were corrected using calibration results and estimates of the background level and position of the stellar image. The light curve was extracted using aperture photometry and analysed with a transit model using a Markov chain Monte Carlo algorithm. Results. In our analysis, we show that the calibration test set-up induces thermally correlated features in the data that can be corrected in post-processing to improve the quality of the light curves. We find that on-ground photometric performances of the instrument measured after this correction is of the order of 15 parts per million over five hours. Using our end-to-end simulation, we determine that measurements of planet-to-star radii ratio with a precision of 2% for a Neptune-size planet transiting a K-dwarf star and 5% for an Earth-size planet orbiting a Sun-like star are possible with CHEOPS. These values correspond to transit depths obtained with signal-to-noise ratios of 25 and 10, respectively, allowing the characterisation and detection of these planets. The pre-launch CHEOPS performances are shown to be compliant with the mission requirements.


1999 ◽  
Vol 17 (4) ◽  
pp. 729-740 ◽  
Author(s):  
I.V. ALEKSANDROVA ◽  
E.R. KORESHEVA ◽  
I.E. OSIPOV ◽  
V.I. GOLOV ◽  
V.I. CHTCHERBAKOV

Determining the cryogenic target parameters with high precision calls for the development of a new direction in the area of target characterization based on microtomography methods of data processing. In this report we present our first results in this area.


2013 ◽  
Vol 22 (01) ◽  
pp. 1341002 ◽  
Author(s):  
MASAKI ANDO ◽  
the DECIGO WORKING GROUP

DECIGO Pathfinder (DPF) is a small (~350 kg) satellite orbiting the Earth. DPF was originally proposed as the first milestone mission for a future space gravitational-wave (GW) antenna, DECi-hertz Interferometer Gravitational wave Observatory (DECIGO). In addition to the purpose of space demonstrations for DECIGO, DPF has scientific objectives: observation of GWs from black-hole mergers and monitor of Earth's gravity, as well as establishment of space technologies for high-precision measurements. In this paper, we review the conceptual design, scientific outcomes and the current status of DPF.


Sign in / Sign up

Export Citation Format

Share Document