High‐precision X‐ray spectroscopy of Fe ions in an EBIT using a micro‐calorimeter detector: First results

2019 ◽  
Vol 49 (1) ◽  
pp. 184-187
Author(s):  
Marc O. Herdrich ◽  
Andreas Fleischmann ◽  
Daniel Hengstler ◽  
Steffen Allgeier ◽  
Christian Enss ◽  
...  
Author(s):  
J. C. Russ ◽  
T. Taguchi ◽  
P. M. Peters ◽  
E. Chatfield ◽  
J. C. Russ ◽  
...  

Conventional SAD patterns as obtained in the TEM present difficulties for identification of materials such as asbestiform minerals, although diffraction data is considered to be an important method for making this purpose. The preferred orientation of the fibers and the spotty patterns that are obtained do not readily lend themselves to measurement of the integrated intensity values for each d-spacing, and even the d-spacings may be hard to determine precisely because the true center location for the broken rings requires estimation. We have implemented an automatic method for diffraction pattern measurement to overcome these problems. It automatically locates the center of patterns with high precision, measures the radius of each ring of spots in the pattern, and integrates the density of spots in that ring. The resulting spectrum of intensity vs. radius is then used just as a conventional X-ray diffractometer scan would be, to locate peaks and produce a list of d,I values suitable for search/match comparison to known or expected phases.


2020 ◽  
Vol 235 (8-9) ◽  
pp. 311-317
Author(s):  
Stephan G. Jantz ◽  
Florian Pielnhofer ◽  
Henning A. Höppe

Abstract${\text{Pb}}_{5}{\text{O}}_{2}\left[{\text{WO}}_{6}\right]$ was discovered as a frequently observed side phase during our investigation on lead tungstates. Its crystal structure was solved by single-crystal X-ray diffraction ($P{2}_{1}/n$, $a=7.4379\left(2\right)$ Å, $b=12.1115\left(4\right)$ Å, $c=10.6171\left(3\right)$ Å, $\beta =90.6847\left(8\right)$°, $Z=4$, ${R}_{\text{int}}=0.038$, ${R}_{1}=0.020$, $\omega {R}_{2}=0.029$, 4188 data, 128 param.) and is isotypic with ${\text{Pb}}_{5}{\text{O}}_{2}\left[{\text{Te}}_{6}\right]$. ${\text{Pb}}_{5}{\text{O}}_{2}\left[{\text{WO}}_{6}\right]$ comprises a layered structure built up by non-condensed [WO6]${}^{6-}$ octahedra and ${\left[{\text{O}}_{4}{\text{Pb}}_{10}\right]}^{12+}$ oligomers. The compound was characterised by spectroscopic measurements (Infrared (IR), Raman and Ultraviolet–visible (UV/Vis) spectra) as well as quantum chemical and electrostatic calculations (density functional theory (DFT), MAPLE) yielding a band gap of 2.9 eV fitting well with the optical one of 2.8 eV. An estimation of the refractive index based on the Gladstone-Dale relationship yielded $n\approx 2.31$. Furthermore first results of the thermal analysis are presented.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4061
Author(s):  
Yongtao Li ◽  
Liqing Liu ◽  
Dehao Wang ◽  
Hongguang Zhang ◽  
Xuemin He ◽  
...  

BiFeO3 is considered as a single phase multiferroic. However, its magnetism is very weak. We study the magnetic properties of BiFeO3 by Cu and (Cu, Zn). Polycrystalline samples Bi(Fe0.95Cu0.05)O3 and BiFe0.95(Zn0.025Cu0.025)O3 are prepared by the sol-gel method. The magnetic properties of BiFe0.95(Zn0.025Cu0.025)O3 are greater than that of BiFeO3 and Bi(Fe0.95Cu0.05)O3. The analyses of X-ray absorption fine structure data show that the doped Cu atoms well occupy the sites of the Fe atoms. X-ray absorption near edge spectra data confirm that the valence state of Fe ions does not change. Cu and Zn metal ion co-doping has no impact on the local structure of the Fe and Bi atoms. The modification of magnetism by doping Zn can be understood by the view of the occupation site of non-magnetically active Zn2+.


1996 ◽  
Vol 14 (3) ◽  
pp. 971-976 ◽  
Author(s):  
N. Awaji ◽  
Y. Sugita ◽  
T. Nakanishi ◽  
S. Ohkubo ◽  
K. Takasaki ◽  
...  
Keyword(s):  

1997 ◽  
Vol 15 (1) ◽  
pp. 133-138 ◽  
Author(s):  
A.M. Buyko ◽  
O.M. Burenkov ◽  
V.K. Chernyshev ◽  
S.F. Garanin ◽  
S.D. Kuznetsov ◽  
...  

Powerful pulse installations are usually used to produce large yields of X-ray radiation. With an increase of the stored energy up to 100 MJ, the costof a single experiment on these installations becomes comparable to the cost of a shot with explosive magnetic generators (EMG), according to expert estimates. The physical scheme of a device with a changeable mass liner forlarge soft X-ray (in the range of 0.3 to 0.5 keV) yields eneration is investigated. The scheme investigated is substantially free from difficulties connected with high precision liners and fast switches for current pulse sharpening.


2021 ◽  
Vol 50 (1) ◽  
pp. 156-164
Author(s):  
吴鹿杰 Lujie WU ◽  
文庆涛 Qingtao WEN ◽  
高雅增 Yazeng GAO ◽  
卢维尔 Weier LU ◽  
夏洋 Yang XIA ◽  
...  

Author(s):  
L. I. Goray ◽  
E. V. Pirogov ◽  
M. V. Svechnikov ◽  
M. S. Sobolev ◽  
N. K. Polyakov ◽  
...  

Author(s):  
Alexander Kiy ◽  
Christian Notthoff ◽  
Shankar Dutt ◽  
Mark Grigg ◽  
Andrea Hadley ◽  
...  

In situ small angle X-ray scattering (SAXS) measurements of ion track etching of polycarbonate foils are used to directly monitor the selective dissolution of ion tracks with high precision, including...


1968 ◽  
pp. 359-375 ◽  
Author(s):  
T. W. Baker ◽  
J. D. George ◽  
B. A. Bellamy ◽  
R. Causer

Sign in / Sign up

Export Citation Format

Share Document