scholarly journals The Eurasian Modern Pollen Database (EMPD), version 2

2020 ◽  
Vol 12 (4) ◽  
pp. 2423-2445
Author(s):  
Basil A. S. Davis ◽  
Manuel Chevalier ◽  
Philipp Sommer ◽  
Vachel A. Carter ◽  
Walter Finsinger ◽  
...  

Abstract. The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).

2020 ◽  
Author(s):  
Basil A. S. Davis ◽  
Manuel Chevalier ◽  
Philipp Sommer ◽  
Vachel A. Carter ◽  
Walter Finsinger ◽  
...  

Abstract. The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land-cover and land-use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from Northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated mapbased viewer at https://empd2.github.io, and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).


1989 ◽  
Vol 31 (3) ◽  
pp. 396-406 ◽  
Author(s):  
Calvin J. Heusser

AbstractVegetation and climate over approximately the past 13,000 yr are reconstructed from fossil pollen in a 9.4-m mire section at Caleta Róbalo on Beagle Channel, Isla Navarino (54°56′S, 67°38′W), southern Tierra del Fuego. Fifty surface samples reflecting modern pollen dispersal serve to interpret the record. Chronologically controlled by nine radiocarbon dates, fossil pollen assemblages are: Empetrum-Gramineae-Gunnera-Tubuliflorae (zone 3b, 13,000–11,850 yr B.P.), Gramineae-Empetrum-assorted minor taxa (zone 3a, 11,850-10,000 yr B.P.), Nothofagus-Gramineae-Tubuliflorae-Polypodiaceae (zone 2, 10,000–5000 yr B.P.), Nothofagus-Empetrum (zone 1b, 5000-3000 yr B.P.), and Empetrum-Nothofagus (zone 1a, 3000-0 yr B.P.). Assemblages show tundra under a cold, dry climate (zone 3), followed by open woodland (zone 2), as conditions became warmer and less dry, and later, with greater humidity and lower temperatures, by closed forest and the spread of mires (zone 1). Comparisons drawn with records from Antarctica, New Zealand, Tasmania, and the subantarctic islands demonstrate broadly uniform conditions in the circumpolar Southern Hemisphere. The influences of continental and maritime antarctic air masses were apparently considerable in Tierra del Fuego during cold late-glacial time, whereas Holocene climate was largely regulated by interplay between maritime polar and maritime tropical air.


1997 ◽  
Vol 45 (3) ◽  
pp. 583 ◽  
Author(s):  
Donna D'Costa ◽  
A. Peter Kershaw

Seventy-one pollen spectra from prior to the period of European impact were extracted from fossil pollen diagrams on mainland south-eastern Australia in 1991 to use as a modern reference for refinement of vegetation and climatic histories constructed from the region. This paper presents results of an extension of this recent database to 135 spectra, derived from additional fossil pollen sites on the mainland and also from sites in Tasmania. The sites include those of almost all late Quaternary pollen studies ever undertaken. Estimates of climate for each site, derived by BIOCLIM, have allowed an examination of patterns of representation of individual recorded taxa in relation to regional variation in major climatic parameters. Pollen taxa show variable representation in relation to their inferred presence and abundance in parent vegetation due to differential pollen production and dispersal characteristics. However, patterns of pollen representation do appear to relate, in broad terms, to climatic variation. It is considered that this modern pollen and climate database should lead to more certain interpretation of future pollen records including some quantification of palaeoclimatic conditions.


2015 ◽  
Vol 84 (3) ◽  
pp. 301-311 ◽  
Author(s):  
María Eugenia de Porras ◽  
Antonio Maldonado ◽  
Andrés Zamora-Allendes ◽  
Claudio Latorre

The use of rodent middens from northern Chile as paleoecological archives has at times been questioned due to concerns about their biogenic origin and the degree to which their record represents vegetation composition rather than rodent habits. To address such concerns, we carried out a modern calibration study to assess the representation of vegetation by pollen records from rodent middens. We compared vegetation censuses with soil-surface and midden (matrix and feces) pollen samples from sites between 21° and 28°S. The results show that (1) the pollen signal from the midden matrix provides a more realistic reflection of local vegetation than soil-surface samples due to the pollen-deposition processes that occur in middens; and (2) in contrast to feces pollen assemblages, which feature some biases, rodent dietary habits do not seem to influence midden matrix pollen assemblages, probably because midden agents are dietary generalists. Our finding that modern pollen data from rodent middens reflect vegetation patterns confirms the reliability of midden pollen records as paleoecological archives in northern Chile.


1985 ◽  
Vol 23 (1) ◽  
pp. 87-108 ◽  
Author(s):  
J. T. Overpeck ◽  
T. Webb ◽  
I. C. Prentice

Dissimilarity coefficients measure the difference between multivariate samples and provide a quantitative aid to the identification of modern analogs for fossil pollen samples. How eight coefficients responded to differences among modern pollen samples from eastern North America was tested. These coefficients represent three different classes: (1) unweighted coefficients that are most strongly influenced by large-valued pollen types, (2) equal-weight coefficients that weight all pollen types equally but can be too sensitive to variations among rare types, and (3) signal-to-noise coefficients that are intermediate in their weighting of pollen types. The studies with modern pollen allowed definition of critical values for each coefficient, which, when not exceeded, indicate that two pollen samples originate from the same vegetation region. Dissimilarity coefficients were used to compare modern and fossil pollen samples, and modern samples so similar to fossil samples were found that most of three late Quaternary pollen diagrams could be “reconstructed” by substituting modern samples for fossil samples. When the coefficients indicated that the fossil spectra had no modern analogs, then the reconstructed diagrams did not match all aspects of the originals. No modern analogs existed for samples from before 9300 yr B.P. at Kirchner Marsh, Minnesota, and from before 11,000 yr B.P. at Wintergreen Lake, Michigan, but modern analogs existed for almost all Holocene samples from these two sites and Brandreth Bog, New York.


1990 ◽  
Vol 68 (6) ◽  
pp. 1320-1326 ◽  
Author(s):  
Calvin J. Heusser

Late Quaternary vegetational history of the Aleutian Islands is interpreted from fossil pollen and spore stratigraphy and radiocarbon chronology of sections of mires on the islands of Attu, Adak, Atka, and Umnak. Mires postdate the withdrawal of ice-age glaciers between approximately 12 000 and 10 000 years ago with the exception of the mire on Attu Island, where deglaciation apparently began as late as 7000 years ago. No uniform pattern of change in Pacific coastal tundra communities is evident in the fossil assemblages. Pollen assemblages, consisting variably of Gramineae, Cyperaceae, Empetrum, Umbelliferae, Salix, Ranunculaceae, Compositae, Polypodiaceae, and Lycopodium, reflect conditions in effect in different sectors of the Aleutian chain. Climate, soil, topography, volcanism, and seismic activity are noteworthy parameters influencing vegetation composition and distribution. Volcanism has been of major importance, as shown by thickness, distribution, and frequency of tephra layers that number 5 on Attu, 24 on Adak, 17 on Atka, and 5 on Umnak. A repeated condition of patch dynamics, created in the main by recurrent volcanic eruptions with widespread accompanying ashfalls, has apparently overprinted the effects of climatic change. Key words: Aleutian Islands, Quaternary, vegetation, fossil pollen, volcanism.


Sign in / Sign up

Export Citation Format

Share Document