scholarly journals A Global Space-based Stratospheric Aerosol Climatology (Version 2.0): 1979–2018

Author(s):  
Mahesh Kovilakam ◽  
Larry Thomason ◽  
Nicholas Ernest ◽  
Landon Rieger ◽  
Adam Bourassa ◽  
...  

Abstract. A robust stratospheric aerosol climate data record enables the depiction of the radiative forcing of this highly variable component of climate. Since stratospheric aerosol also plays a key role in the chemical processes leading to ozone depletion, stratosphere is one of the crucial parameters in understanding climate change in the past and potential changes in the future. As a part of Stratospheric-tropospheric Processes and their Role in Climate (SPARC) Stratospheric Sulfur and its Role in Climate (SSiRC) activity, the Global Space-based Stratospheric Aerosol Climatology (GloSSAC) was created (Thomason et al., 2018) to support the World Climate Research Programme (WCRP)’s Coupled Model Intercomparison Project Phase 6 (CMIP6) (Zanchettin et al., 2016). This data set is a follow-on to one created as a part of Stratosphere-Troposphere Process and their Role in Climate Project (SPARC)’s Assessment of Stratospheric Aerosol Properties (ASAP) activity(SPARC, 2006) and a data created for Chemistry-Climate Model Initiative (CCMI) in 2012 (Eyring and Lamarque, 2012). Herein, we discuss changes to the original release version including those as a part of v1.1 that was released in September 2018 that primarily corrects an error in the conversion of Cryogenic Limb Array Etalon Spectrometer (CLAES) data to Stratospheric Aerosol and Gas Experiment (SAGE) II wavelengths, and the new release, v2.0. Version 2.0 is focused on improving the post-SAGE II era (after 2005) with the goal to mitigate elevated aerosol extinction in the lower stratosphere at mid and high latitudes noted in v1.0 as noted in Thomason et al. (2018). Changes include the use of version 7.0 of Optical Spectrograph and InfraRed Imaging System(OSIRIS), the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Lidar Level 3 Stratospheric Aerosol profile monthly product, and the new addition of SAGE III/ISS. Although, the version 7.0 OSIRIS data is substantially improved at its native wavelength of 750 nm, conversion to 525 nm using a constant Angstrom exponent often results in disagreements with SAGEII/ SAGE III/ISS overlap measurements. We, therefore use an observed relationship between OSIRIS extinction at 750 nm and SAGEII/SAGE III/ISS extinction at 525 nm to derive Altitude-Latitude based monthly climatology of Angstrom exponent to compute extinction at 525 nm, resulting in a better agreement between OSIRIS and SAGE measurements. We employ a similar approach to convert OSIRIS 750 nm extinction to 1020 nm extinction for the post-SAGEII period. Additionally, we incorporate the recently released standard CALIPSO stratospheric aerosol profile monthly product into GloSSAC with an improved conversion technique of 532 nm backscatter coefficient to extinction using an observed relationship between OSIRIS 525 nm extinction and CALIPSO 532 nm backscatter. We also investigate for any cloud contamination in OSIRIS/standard CALIPSO stratospheric aerosol product, which may have caused apparent enhancement in the aerosol extinction particularly in the lower stratosphere. SAGE III/ISS data is also incorporated in GloSSAC to extend the climatology to the present and to test the approach used to correct OSIRIS/CALIPSO data. The GloSSAC v2.0 netcdf file is accessible at https://doi.org/10.5067/glossac-l3-v2.0 (Thomason, 2020).

2018 ◽  
Author(s):  
Elizaveta Malinina ◽  
Alexei Rozanov ◽  
Landon Rieger ◽  
Adam Bourassa ◽  
Heinrich Bovensmann ◽  
...  

Abstract. Stratospheric aerosols are of a great importance to the scientific community, predominantly because of their role in climate, but also because accurate knowledge of aerosol characteristics is relevant for trace gases retrievals from remote sensing instruments. There are several data sets published which provide aerosol extinction coefficients in the stratosphere. However, for the instruments measuring in the limb viewing geometry, the use of this parameter is associated with uncertainties resulting from the need to assume an aerosol particle size distribution (PSD) within the retrieval process. These uncertainties can be mitigated if PSD information is retrieved. While occultation instruments provide more accurate information on the aerosol extinction coefficient, in this study, it was shown that limb instruments have better potential for the PSD retrieval, especially during the background aerosol loading periods. A data set containing PSD information was recently retrieved from SCIAMACHY limb measurements and provides two parameters of the log-normal PSD for the SCIAMACHY operational period (2002–2012). In this study, the data set is expanded by aerosol extinction coefficients and Ångström exponents calculated from the retrieved PSD parameters. Errors in the Ångström exponents and aerosol extinction coefficients are assessed using synthetic retrievals. For the extinction coefficient the resulting accuracy is within ±25 %, and for the Ångström exponent, it is better than 10 %. The recalculated SCIAMACHY aerosol extinction coefficients are compared to those from SAGE II. The differences between the instruments vary from 0 to 25 % depending on the wavelength. Ångström exponent comparison with SAGE II shows differences between 10 % at 31 km and 40 % at 18 km. Comparisons with SAGE II, however, suffer from the low amount of collocated profiles. Furthermore, the Ångström exponents obtained from the limb viewing instrument OSIRIS are used for the comparison. This comparison shows an average difference within 7 %. The time series of these differences do not show signatures of any remarkable events. Besides, the temporal behavior of the Ångström exponent in the tropics is analyzed using the SCIAMACHY data set. It is shown, that there is no simple relation between the Ångström exponent and the PSD because the same value of Ångström exponent can be obtained from an infinite number of combinations of the PSD parameters.


2019 ◽  
Vol 12 (7) ◽  
pp. 3485-3502 ◽  
Author(s):  
Elizaveta Malinina ◽  
Alexei Rozanov ◽  
Landon Rieger ◽  
Adam Bourassa ◽  
Heinrich Bovensmann ◽  
...  

Abstract. Stratospheric aerosols are of a great importance to the scientific community, predominantly because of their role in climate, but also because accurate knowledge of aerosol characteristics is relevant for trace gas retrievals from remote-sensing instruments. There are several data sets published which provide aerosol extinction coefficients in the stratosphere. However, for the instruments measuring in the limb-viewing geometry, the use of this parameter is associated with uncertainties resulting from the need to assume an aerosol particle size distribution (PSD) within the retrieval process. These uncertainties can be mitigated if PSD information is retrieved. While occultation instruments provide more accurate information on the aerosol extinction coefficient, in this study, it was shown that limb instruments are more sensitive to the smaller particles in the visible–near-infrared spectral range. However, the sensitivity of occultation instruments improves if the UV part of the wavelength spectrum is considered. A data set containing PSD information was recently retrieved from SCIAMACHY limb measurements and provides two parameters of the unimodal lognormal PSD for the SCIAMACHY operational period (2002–2012). In this study, the data set is expanded by aerosol extinction coefficients and Ångström exponents calculated from the retrieved PSD parameters. Parameter errors for the recalculated Ångström exponents and aerosol extinction coefficients are assessed using synthetic retrievals. For the extinction coefficient the resulting parameter error is within ±25 %, and for the Ångström exponent, it is better than 10 %. The SCIAMACHY aerosol extinction coefficients recalculated from PSD parameters are compared to those from SAGE II. The differences between the instruments vary from 0 % to 25 % depending on the wavelength. Ångström exponent comparison with SAGE II shows differences between 10 % at 31 km and 40 % at 18 km. Comparisons with SAGE II, however, suffer from the low number of collocated profiles. Furthermore, the Ångström exponents obtained from the limb-viewing instrument OSIRIS are used for the comparison. This comparison shows an average difference within 7 %. The time series of these differences do not show signatures of any remarkable events (e.g., volcanic eruptions or biomass burning events). In addition, the temporal behaviour of the Ångström exponent in the tropics is analyzed using the SCIAMACHY data set. It is shown that there is no trivial relation between the Ångström exponent value at a single wavelength pair and the PSD because the same value of Ångström exponent can be obtained from an infinite number of combinations of the PSD parameters.


2020 ◽  
Vol 12 (4) ◽  
pp. 2607-2634
Author(s):  
Mahesh Kovilakam ◽  
Larry W. Thomason ◽  
Nicholas Ernest ◽  
Landon Rieger ◽  
Adam Bourassa ◽  
...  

Abstract. A robust stratospheric aerosol climate data record enables the depiction of the radiative forcing of this highly variable component of climate. In addition to the radiative forcing, stratospheric aerosol also plays a key role in the chemical processes leading to ozone depletion. Therefore, stratospheric aerosol is one of the crucial parameters in understanding climate change in the past and potential changes in the future. As a part of Stratospheric-tropospheric Processes and their Role in Climate (SPARC) Stratospheric Sulfur and its Role in Climate (SSiRC) activity, the Global Space-based Stratospheric Aerosol Climatology (GloSSAC) was created (Thomason et al., 2018) to support the World Climate Research Programme's (WCRP) Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016). This data set is a follow-on to one created as a part of SPARC's Assessment of Stratospheric Aerosol Properties (ASAP) activity (SPARC, 2006) and a data created for the Chemistry-Climate Model Initiative (CCMI) in 2012 (Eyring and Lamarque, 2012). Herein, we discuss changes to the original release version including those as a part of v1.1 that was released in September 2018 that primarily corrects an error in the conversion of Cryogenic Limb Array Etalon Spectrometer (CLAES) data to Stratospheric Aerosol and Gas Experiment (SAGE) II wavelengths, as well as the new release, v2.0. Version 2.0 is focused on improving the post-SAGE II era (after 2005) with the goal of mitigating elevated aerosol extinction in the lower stratosphere at mid- and high latitudes noted in v1.0 as noted in Thomason et al. (2018). Changes include the use of version 7.0 of the Optical Spectrograph and InfraRed Imaging System (OSIRIS), the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar Level 3 stratospheric aerosol profile monthly product and the new addition of SAGE III/ISS. Here, we use an observed relationship between (i) OSIRIS extinction at 750 nm and (ii) SAGE II and SAGE III/ISS extinction at 525 nm to derive an altitude–latitude-based monthly climatology of Ångström exponent to compute OSIRIS extinction at 525 nm, resulting in a better agreement between OSIRIS and SAGE measurements. We employ a similar approach to convert OSIRIS 750 nm extinction to 1020 nm extinction for the post-SAGE II period. Additionally, we incorporate the recently released standard CALIPSO stratospheric aerosol profile monthly product into GloSSAC with an improved conversion technique of the 532 nm backscatter coefficient to extinction using an observed relationship between OSIRIS 525 nm extinction and CALIPSO 532 nm backscatter. SAGE III/ISS data are also incorporated in GloSSAC to extend the climatology to the present and to test the approach used to correct OSIRIS/CALIPSO data. The GloSSAC v2.0 netCDF file is accessible at https://doi.org/10.5067/glossac-l3-v2.0 (Thomason, 2020).


2017 ◽  
Author(s):  
Julian Hofer ◽  
Dietrich Althausen ◽  
Sabur F. Abdullaev ◽  
Abduvosit N. Makhmudov ◽  
Bakhron I. Nazarov ◽  
...  

Abstract. For the first time, continuous vertically resolved aerosol measurements were performed by lidar in Tajikistan, Central Asia. Observations with the multiwavelength polarization/Raman lidar PollyXT were conducted during CADEX (Central Asian Dust EXperiment) in Dushanbe, Tajikistan, from March 2015 to August 2016. Co-located with the lidar a sun photometer was operated. The goal of CADEX is to provide an unprecedented data set on vertically resolved aerosol optical properties in Central Asia, an area highly affected by climate change but largely missing vertically resolved aerosol measurements. During the 18-months measurement campaign, mineral dust was detected frequently from ground to cirrus level height. In this study, an overview of the measurement period is given and four typical but different example measurement cases are discussed in detail. Three of them are dust cases and one is a contrasting pollution aerosol case. Vertical profiles of the measured optical properties and the calculated dust and non-dust mass concentrations are presented. Dust source regions were identified by means of backward trajectory analyses. A lofted layer of Middle Eastern dust with an aerosol optical thickness (AOT) of 0.4 and an extinction-related Ångström exponent of 0.41 was measured. In comparison, two near-ground dust cases have Central Asian sources. One is an extreme dust event with an AOT of 1.5 and Ångström exponent of 0.12 and the other one is a most extreme dust event with an AOT of above 4 (measured by sun photometer) and an Ångström exponent of −0.08. The observed lidar ratios (particle linear depolarization ratios) in the presented dust cases range from 40.3 sr to 46.9 sr (0.18–0.29) at 355 nm and from 35.7 sr to 42.9 sr (0.31–0.35) at 532 nm wavelength. The particle linear depolarization ratios indicate almost unpolluted dust in the case of a lofted dust layer and pure dust in the near-ground dust cases. The lidar ratio values are lower than typical lidar ratio values for Saharan dust (50–60 sr) and comparable to Middle Eastern/West-Asian dust lidar ratios (35–45 sr). In contrast, the presented case of pollution aerosol of local origin has an Ångström exponent of 2.07 and a lidar ratio (particle linear depolarization ratio) of 55.8 sr (0.03) at 355 nm and 32.8 sr (0.08) at 532 nm wavelength.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 482 ◽  
Author(s):  
Victor Nicolae ◽  
Camelia Talianu ◽  
Simona Andrei ◽  
Bogdan Antonescu ◽  
Dragoș Ene ◽  
...  

In this study, AERONET (Aerosol Robotic Network) and EARLINET (European Aerosol Research Lidar Network) data from 17 collocated lidar and sun photometer stations were used to characterize the optical properties of aerosol and their types for the 2008–2018 period in various regions of Europe. The analysis was done on six cluster domains defined using circulation types around each station and their common circulation features. As concluded from the lidar photometer measurements, the typical aerosol particles observed during 2008–2018 over Europe were medium-sized, medium absorbing particles with low spectral dependence. The highest mean values for the lidar ratio at 532 nm were recorded over Northeastern Europe and were associated with Smoke particles, while the lowest mean values for the Angstrom exponent were identified over the Southwest cluster and were associated with Dust and Marine particles. Smoke (37%) and Continental (25%) aerosol types were the predominant aerosol types in Europe, followed by Continental Polluted (17%), Dust (10%), and Marine/Cloud (10%) types. The seasonal variability was insignificant at the continental scale, showing a small increase in the percentage of Smoke during spring and a small increase of Dust during autumn. The aerosol optical depth (AOD) slightly decreased with time, while the Angstrom exponent oscillated between “hot and smoky” years (2011–2015) on the one hand and “dusty” years (2008–2010) and “wet” years (2017–2018) on the other hand. The high variability from year to year showed that aerosol transport in the troposphere became more and more important in the overall balance of the columnar aerosol load.


2015 ◽  
Vol 15 (8) ◽  
pp. 12583-12616
Author(s):  
A. Skupin ◽  
A. Ansmann ◽  
R. Engelmann ◽  
P. Seifert ◽  
T. Müller

Abstract. The ambient aerosol particle extinction coefficient is measured with the Spectral Aerosol Extinction Monitoring System (SÆMS) along a 2.84 km horizontal path at 30–50 m height above ground in the urban environment of Leipzig (51.3° N, 12.4° E), Germany, since 2009. The dependence of the particle extinction coefficient (wavelength range from 300–1000 nm) on relative humidity up to almost 100% was investigated. The main results are presented. For the wavelength of 550 nm, the mean extinction enhancement factor was found to be 1.75 ± 0.4 for an increase of relative humidity from 40 to 80%. The respective four-year mean extinction enhancement factor is 2.8 ± 0.6 for a relative-humidty increase from 40 to 95%. A parameterization of the dependency of the urban particle extinction coefficient on relative humidity is presented. A mean hygroscopic exponent of 0.463 for the 2009–2012 period was determined. Based on a backward trajectory cluster analysis, the dependence of several aerosol optical properties for eight air flow regimes was investigated. Large differences were not found indicating that local pollution sources widely control the aerosol conditions over the urban site. The comparison of the SÆMS extinction coefficient statistics with respective statistics from ambient AERONET sun photometer observations yield good agreement. Also, time series of the particle extinction coefficient computed from in-situ-measured dry particle size distributions and humidity-corrected SÆMS extinction values (for 40% relative humidity) were found in good overall consistency, which corroborates the applicability of the developed humidity parameterization scheme. The analysis of the spectral dependence of particle extinction (Ångström exponent) revealed an increase of the 390–881 nm Ångström exponent from, on average, 0.3 (at 30% relative humidity) to 1.3 (at 95% relative humidity) for the four-year period.


2016 ◽  
Author(s):  
I. Veselovskii ◽  
P. Goloub ◽  
T. Podvin ◽  
V. Bovchaliuk ◽  
Y. Derimian ◽  
...  

Abstract. West Africa and the adjacent oceanic regions are very important locations for studying dust properties and their influence on weather and climate. The SHADOW (Study of SaHAran Dust Over West Africa) campaign is performing a multi-scale and multi-laboratory study of aerosol properties and dynamics using a set of in situ and remote sensing instruments at an observation site located at IRD (Institute for Research and Development) Center, Mbour, Senegal (14° N, 17° W). In this paper, we present the results of lidar measurements performed during the first phase of SHADOW which occurred in March-April, 2015. The multiwavelength Mie-Raman lidar acquired 3β + 2α + 1δ measurements during this period. This set of measurements has permitted particle intensive properties such as extinction and backscattering Ångström exponents (BAE) for 355/532 nm wavelengths corresponding lidar ratios and depolarization ratio at 532 nm to be determined. The mean values of dust lidar ratios during the observation period were about 53 sr at both 532 nm and 355 nm, which agrees with the values observed during the SAMUM 1 and SAMUM 2 campaigns held in Morocco and Cape Verde in 2006, 2008. The mean value of particle depolarization ratio at 532 nm was 30 ± 4.5 %, however during strong dust episodes this ratio increased to 35 ± 5 %, which is also in agreement with the results of the SAMUM campaigns. The backscattering Ångström exponent during the dust episodes decreased to ~ −0.7, while the extinction Ångström exponent though being negative, was greater than −0.2. Low values of BAE can likely be explained by an increase in the imaginary part of the dust refractive index at 355 nm compared to 532 nm. The dust extinction and backscattering coefficients at multiple wavelengths were inverted to the particle microphysics using the regularization algorithm and the model of randomly oriented spheroids. The analysis performed has demonstrated that the spectral dependence of the imaginary part of the dust refractive index may significantly influence the inversion results and should be taken into account.


2013 ◽  
Vol 13 (4) ◽  
pp. 9267-9317 ◽  
Author(s):  
M. Mallet ◽  
O. Dubovik ◽  
P. Nabat ◽  
F. Dulac ◽  
R. Kahn ◽  
...  

Abstract. Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angström Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a~total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996–2012 with most data being from 2003–2011 (~89% of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm > 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angström exponent <1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000–2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004–2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005–2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 ± 0.01 (resp. 0.040 ± 0.01) and 0.050 ± 0.01 (0.055 ± 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately" absorbing with values of SSA close to ~0.94–0.95 ± 0.04 (at 440 nm) in most cases except over the large cities of Rome and Athens, where aerosol appears more absorbing (SSA ~0.89–0.90 ± 0.04). The aerosol Absorption Angström Exponent (AAE, estimated using 440 and 870 nm) is found to be larger than 1 for most sites over the Mediterranean, a manifestation of mineral dust (iron) and/or brown carbon producing the observed absorption. AERONET level-2 sun-photometer data indicate the existence of a moderate East–West gradient, with higher values over the eastern basin (AAEEast. = 1.39/AAEWest. = 1.33) due to the influence of desert dust. The North–South AAE gradient is more pronounced, especially over the western basin. Our additional analysis of AERONET level-1.5 data also shows that organic absorbing aerosols significantly affect some Mediterranean sites. These results indicate that current climate models treating organics as nonabsorbing over the Mediterranean certainly underestimate the warming effect due to carbonaceous aerosols. A~comparative analysis of the regional SSA variability has been attempted using satellite data. OMI and MODIS data show an absorbing zone (SSA ~0.90 at 470–500 nm) over Northeastern Africa that does not appear in the MISR retrievals. In contrast, MISR seems able to observe the East–West SSA gradient during summer, as also detected by AERONET. Also, the analysis of SSA provided by satellites indicates that the aerosol over the Mediterranean Sea appears less absorbing during spring (MAM) than summer (JJA).


2008 ◽  
Vol 8 (2) ◽  
pp. 6845-6901 ◽  
Author(s):  
R. M. Garland ◽  
H. Yang ◽  
O. Schmid ◽  
D. Rose ◽  
A. Nowak ◽  
...  

Abstract. The scattering and absorption of solar radiation by atmospheric aerosols is a key element of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however, highly variable and not well characterized, especially near newly emerging mega-cities. In this study, aerosol optical properties were measured at a regional background site approximately 60 km northwest of the mega-city Guangzhou in southeast China. The measurements were part of the "Program of Regional Integrated Experiments of Air Quality over the Pearl River Delta" intensive campaign (PRIDE-PRD2006), covering the period of 1–30 July 2006. Scattering and absorption coefficients of dry aerosol particles with diameters up to 10 μm (PM10) were determined with a three-wavelength integrating nephelometer and with a photoacoustic spectrometer, respectively. Averaged over the measurement campaign (arithmetic mean ±standard deviation), the total scattering coefficients were 200±133 Mm−1 (450 nm), 151±103 Mm−1 (550 nm) and 104±72 Mm−1 (700 nm) and the absorption coefficient was 34.3±26.5 Mm−1 (532 nm). The average Ångström exponent was 1.46±0.21 (450 nm/700 nm) and the average single scattering albedo was 0.82±0.07 (532 nm) with minimum values as low as 0.5. The low single scattering albedo values indicate a high abundance of, as well as strong sources of light absorbing carbon (LAC). The ratio of LAC to CO concentration was highly variable throughout the campaign, indicating a complex mix of different combustion sources. The scattering and absorption coefficients, as well as the Ångström exponent and single scattering albedo, exhibited pronounced diurnal cycles, which can be attributed to boundary layer mixing effects and enhanced nighttime emissions of LAC (diesel soot from regulated truck traffic). The daytime average single scattering albedo of 0.87 appears to be more suitable for climate modeling purposes than the 24-h average of 0.82, as the latter value is strongly influenced by fresh emissions into a shallow nocturnal boundary layer. In spite of high photochemical activity during daytime, we found no evidence for strong local production of secondary aerosol mass. The relatively low average mass scattering efficiency with respect to PM10 (2.84±0.037 m2 g−1, λ=550 nm) indicates a high proportion of mass in the coarse particle fraction (diameter >1 μm). During high pollution episodes, however, the Ångström exponent exhibited a dependence on wavelength, which indicates an enhancement of the fine particle fraction during these periods. A negative correlation between single scattering albedo and backscatter fraction was observed and found to affect the impact that these parameters have on aerosol radiative forcing efficiency.


Sign in / Sign up

Export Citation Format

Share Document