scholarly journals Landsat-based Irrigation Dataset (LANID): 30-m resolution maps of irrigation distribution, frequency, and change for the U.S., 1997–2017

2021 ◽  
Author(s):  
Yanhua Xie ◽  
Holly K. Gibbs ◽  
Tyler J. Lark

Abstract. Data on irrigation patterns and trends at field-level detail across broad extents is vital for assessing and managing limited water resources. Until recently, there has been a scarcity of comprehensive, consistent, and frequent irrigation maps for the U.S. Here we present the new Landsat-based Irrigation Dataset (LANID), which is comprised of 30-m resolution annual irrigation maps covering the conterminous U.S. (CONUS) for the period of 1997–2017. The main dataset identifies the annual extent of irrigated croplands, pastureland, and hay for each year in the study period. Derivative maps include layers on maximum irrigated extent, irrigation frequency and trends, and identification of formerly irrigated areas and intermittently irrigated lands. Temporal analysis reveals that 38.5 million hectares of croplands and pasture/hay have been irrigated, among which the yearly active area ranged from ~22.6 to 24.7 million hectares. The LANID products provide several improvements over other irrigation data including field-level details on irrigation change and frequency, an annual time step, and a collection of ~10,000 visually interpreted ground reference locations for the eastern U.S. where such data has been lacking. Our maps demonstrated overall accuracy above 90 % across all years and regions, including in the more humid and challenging-to-map eastern U.S., marking a significant advancement over other products, whose accuracies ranged from 50 to 80 %. In terms of change detection, our maps yield per-pixel transition accuracy of 81 % and show good agreement with U.S. Department of Agriculture reports at both county and state levels. The described annual maps, derivative layers, and ground reference data provide users with unique opportunities to study local to nationwide trends, driving forces, and consequences of irrigation and encourage the further development and assessment of new approaches for improved mapping of irrigation especially in challenging areas like the eastern U.S. The annual LANID maps, derivative products, and ground reference data are available through https://doi.org/10.5281/zenodo.5003976 (Xie et al., 2021).

2021 ◽  
Vol 13 (12) ◽  
pp. 5689-5710
Author(s):  
Yanhua Xie ◽  
Holly K. Gibbs ◽  
Tyler J. Lark

Abstract. Data on irrigation patterns and trends at field-level detail across broad extents are vital for assessing and managing limited water resources. Until recently, there has been a scarcity of comprehensive, consistent, and frequent irrigation maps for the US. Here we present the new Landsat-based Irrigation Dataset (LANID), which is comprised of 30 m resolution annual irrigation maps covering the conterminous US (CONUS) for the period of 1997–2017. The main dataset identifies the annual extent of irrigated croplands, pastureland, and hay for each year in the study period. Derivative maps include layers on maximum irrigated extent, irrigation frequency and trends, and identification of formerly irrigated areas and intermittently irrigated lands. Temporal analysis reveals that 38.5×106 ha of croplands and pasture–hay has been irrigated, among which the yearly active area ranged from ∼22.6 to 24.7×106 ha. The LANID products provide several improvements over other irrigation data including field-level details on irrigation change and frequency, an annual time step, and a collection of ∼10 000 visually interpreted ground reference locations for the eastern US where such data have been lacking. Our maps demonstrated overall accuracy above 90 % across all years and regions, including in the more humid and challenging-to-map eastern US, marking a significant advancement over other products, whose accuracies ranged from 50 % to 80 %. In terms of change detection, our maps yield per-pixel transition accuracy of 81 % and show good agreement with US Department of Agriculture reports at both county and state levels. The described annual maps, derivative layers, and ground reference data provide users with unique opportunities to study local to nationwide trends, driving forces, and consequences of irrigation and encourage the further development and assessment of new approaches for improved mapping of irrigation, especially in challenging areas like the eastern US. The annual LANID maps, derivative products, and ground reference data are available through https://doi.org/10.5281/zenodo.5548555 (Xie and Lark, 2021a).


2017 ◽  
Vol 8 (4) ◽  
pp. 19-29 ◽  
Author(s):  
Christopher R. Laingen

The U.S. Department of Agriculture last delineated the regional boundary of the Corn Belt in 1950. Mixed-grain and livestock farming practices have today transitioned to annually rotating corn and soybeans, which has altered the geographic bounds of this region. To illustrate the changing geography of the Corn Belt, ArcGIS geoprocessing and spatial analysis tools, along with a simple, summative assessment using Census of Agriculture data, were used to map how the region's boundary has changed as myriad internal and external driving forces influence where farmers grow corn. Since 1950 the region's core has remained spatially stable as corn production has intensified, while the region's periphery has shifted to the northwest. The methods used to create this contemporary Corn Belt region illustrate how a regional boundary and internal regional intensities can be used to map agricultural land use change.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Javier Ho ◽  
Paul Bernal

AbstractThis study attempts to fit a global demand model for soybean traffic through the Panama Canal using Ordinary Least Square. Most of the soybean cargo through the interoceanic waterway is loaded on the U.S. Gulf and East Coast ports -mainly destined to East Asia, especially China-, and represented about 34% of total Panama Canal grain traffic between fiscal years 2010–19. To estimate the global demand model for soybean traffic, we are considering explanatory variables such as effective toll rates through the Panama Canal, U.S. Gulf- Asia and U.S. Pacific Northwest- Asia freight rates, Baltic Dry Index, bunker costs, soybean export inspections from the U.S. Gulf and Pacific Northwest, U.S. Gulf soybean basis levels, Brazil’s soybean exports and average U.S. dollar index. As part of the research, we are pursuing the estimation of the toll rate elasticity of vessels transporting soybeans via the Panama Canal. Data come mostly from several U.S. Department of Agriculture sources, Brazil’s Secretariat of Foreign Trade (SECEX) and from Panama Canal transit information. Finally, after estimation of the global demand model for soybean traffic, we will discuss the implications for future soybean traffic through the waterway, evaluating alternative routes and sources for this trade.


HortScience ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1560-1561 ◽  
Author(s):  
Lisa L. Baxter ◽  
Brian M. Schwartz

Bermudagrass (Cynodon spp.) is the foundation of the turfgrass industry in most tropical and warm-temperate regions. Development of bermudagrass as a turfgrass began in the early 1900s. Many of the cultivars commercially available today have been cooperatively released by the U.S. Department of Agriculture Agricultural Research Service (USDA-ARS) and the University of Georgia at the Coastal Plain Experiment Station in Tifton, GA.


2018 ◽  
Vol 19 (3) ◽  
pp. 258-264
Author(s):  
David H. Gent ◽  
Briana J. Claassen ◽  
Megan C. Twomey ◽  
Sierra N. Wolfenbarger

Powdery mildew (caused by Podosphaera macularis) is one of the most important diseases of hop in the western United States. Strains of the fungus virulent on cultivars possessing the resistance factor termed R6 and the cultivar Cascade have become widespread in the Pacific Northwestern United States, the primary hop producing region in the country, rendering most cultivars grown susceptible to the disease at some level. In an effort to identify potential sources of resistance in extant germplasm, 136 male accessions of hop contained in the U.S. Department of Agriculture collection were screened under controlled conditions. Iterative inoculations with three isolates of P. macularis with varying race identified 23 (16.9%) accessions with apparent resistance to all known races of the pathogen present in the Pacific Northwest. Of the 23 accessions, 12 were resistant when inoculated with three additional isolates obtained from Europe that possess novel virulences. The nature of resistance in these individuals is unclear but does not appear to be based on known R genes. Identification of possible novel sources of resistance to powdery mildew will be useful to hop breeding programs in the western United States and elsewhere.


Author(s):  
Eve M. Brank

In the U.S., individual states hold the power of marriage regulation and decide who can and cannot get married. As such, a number of barriers to marriage either are, or historically have been, in place throughout the states. Past barriers are those like physical and mental conditions the states once viewed as risky for reproductive purposes. Barriers also included race and sexual orientation with some states throughout different periods of history restricting interracial and same-sex marriages. Today, barriers are still in place for young age, incest, polygamy/bigamy, fraud, and duress. Personal attitudes and public opinions seem to be the main driving forces behind the changing landscape of past marital barriers. Psychological research has also played a role by informing public opinion.


Food Fights ◽  
2019 ◽  
pp. 162-186
Author(s):  
Sarah Ludington

From its founding, the U.S. government has promoted agriculture, and since the Great Depression, has directly supported farm incomes and crop prices. Franklin Roosevelt’s New Deal programs linked farm subsidies to food assistance for the poor, a politically successful combination then and now. Sarah Ludington describes how the U.S. Department of Agriculture (USDA), through the Farm Bill, became responsible for school lunches, food stamps, and land conservation in addition to billions of dollars in subsidies for commodity crops like corn and cotton. Now a target for both the right wing and left wing of American politics, the Farm Bill continues to embody the tensions at the heart of American agriculture.


Sign in / Sign up

Export Citation Format

Share Document